Journal of Food Measurement and Characterization

, Volume 12, Issue 3, pp 1744–1753 | Cite as

Effect of temperature and pH on stability of anthocyanin obtained from blueberry

  • Ya Liu
  • Yongxiao Liu
  • Cui Tao
  • Mei Liu
  • Yue Pan
  • Zhaolin Lv
Original Paper


Temperature and pH are the key factors which affect the stability of blueberry anthocyanin and blueberry deep processed products, but the effect of temperature and pH on individual anthocyanin (IAC) in blueberries is lack of the further discussion. Blueberry extract containing a variety of anthocyanins was used as research material and modern analytical instrument was combined to investigate the effect of temperature and pH on the stability of blueberry total anthocyanin (TAC) and IAC. The half-life of blueberry TAC began to decrease rapidly from 60 °C with a final half-life of only one-third of 50 °C, or even the original quarter. The initial content blueberry TAC significantly reduced and the half-life t1/2 was only about 4 h at pH 8.0, 9.0. Ten kinds of anthocyanins carrying malvidin, delphinidin, petunidin, cyanidin four common aglycones from blueberry extract were identified. Malvidin-3-O-galactose and malvidin-3-O-arabinose were found to have the alkali resistance. The content of malvidin-3-O-arabinose increased after heated which was different from that of other blueberry anthocyanins under the condition of pH 5.0–6.0. The effect of pH and temperature on all IAC and TAC content were consistent. The results showed that low temperature and low pH were beneficial to the maximum stability of blueberry anthocyanins. What’s more, the data obtained from the research provided important guiding significance for the rational utilization of the abundant resources of blueberry fruit.


Blueberry Total anthocyanin stability Individual anthocyanin stability Temperature pH 



This work was financially Supported by the Science and Technology Research Project of Beijing Forestry University (2015-01) and Forestry Public Welfare Industry Research Special Fund Project (200904014-3).


  1. 1.
    X.J. Huang, J. Li, H.L. Shang, X. Meng, J. Sci. Food Agric. 95, 337–343 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Wang, G. Cao, R.L. Prior, J. Agric. Food Chem. 44, 701–705 (1996)CrossRefGoogle Scholar
  3. 3.
    B.C. Wang, R. He, Z.M. Li, Food Technol. Biotechnol. 48, 42–49 (2010)Google Scholar
  4. 4.
    D. Bagchi, C.K. Sen, M. Bagchi, M. Atalay, Biochemistry (Moscow) 69, 95–102 (2004)CrossRefGoogle Scholar
  5. 5.
    R.L. Galli, D.F. Bielinski, A. Szprengiel, H.B. Shukitt, J.A. Joseph, Neurobiol. Aging 27, 344–350 (2006)CrossRefGoogle Scholar
  6. 6.
    C. Tsang, S. Higgins, G.G. Duthie, M. Howie, W. Mullen, M.E. Lean, J. Br. J. Nutr. 93, 233–240 (2005)CrossRefGoogle Scholar
  7. 7.
    V. Lohachoompol, M. Mulholland, G. Srzednicki, J. Craske, Food Chem. 111, 249–254 (2008)CrossRefGoogle Scholar
  8. 8.
    D. Marko, N. Puppel, Z. Tjaden, S. Jakobs, G. Pahlke, Nutr. Food Res. 48, 318–325 (2004)CrossRefGoogle Scholar
  9. 9.
    J.M. Kong, L.S. Chia, N.K. Goh, T.F. Chia, R. Brouillard, Phytochemistry 64, 923–933 (2003)CrossRefGoogle Scholar
  10. 10.
    B. Jayaprakasam, S.K. Vareed, L.K. Olson, M.G. Nair, J. Agric. Food Chem. 53, 28–31 (2005)CrossRefGoogle Scholar
  11. 11.
    G. Skrede, R.E. Wrolstad, R.W. Durst, J. Food Sci. 65, 357–364 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Lee, R.W. Durst, R.E. Wrolstad, J. AOAC Int. 88, 1269–1279 (2005)Google Scholar
  13. 13.
    F. Kader, M. Irmouli, N. Zitouni, J. Nicolas, M.J. Metche. J. Agric. Food Chem. 47, 4625–4630 (1999)CrossRefGoogle Scholar
  14. 14.
    R.L. Jackman, R.Y. Yada, M.A. Tung, R.A. Speers, J. Food Biochem. 11, 201–247 (1987)CrossRefGoogle Scholar
  15. 15.
    C. Carlsen, H. Stapelfeldt, Food Chem. 60, 383–387 (1997)CrossRefGoogle Scholar
  16. 16.
    F. Queiroz, C. Oliveira, O. Pinho, I.J. Ferreira, Agric. Food Chem. 57, 10712–10717 (2009)CrossRefGoogle Scholar
  17. 17.
    F. Daniela, D.B. Cristian, S. Paolo, G. Claudio, K.Z. Dorothy, C.J. Salvatore, Agric. Food Chem. 61, 2999–3005 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.C. Lin, C.C. Chou, Int. J. Food Sci. Nutr. 8, 1–10 (2008)CrossRefGoogle Scholar
  19. 19.
    N. Mulinacci, F. Ieri, C. Giaccherini, M. Innocenti, L. Andrenelli, G.J. Canova, Agric. Food Chem. 56, 11830–11837 (2008)CrossRefGoogle Scholar
  20. 20.
    V. Shikov, D.R. Kammerer, K. Mihalev, P. Mollov, R.J. Carle, Agric. Food Chem. 56, 8521–8526 (2008)CrossRefGoogle Scholar
  21. 21.
    X. Yue, Z. Xu, J. Food Sci. 73, C494–C499 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Ramesh, R.K Luke, L.R. Howard, Food Res. Int. 43, 1464–1469 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Brownmiller, L.R. Howard, R.L. Prior, J. Food Sci. 73, 134–140 (2008)CrossRefGoogle Scholar
  24. 24.
    M.J. Rein Helsinki, University of Helsinki, Department of Applied Chemistry and Microbiology (2005)Google Scholar
  25. 25.
    C. Gauche, E.D.S. Malagoli, M.T.B. Luiz, Sci. Agric. 67, 41–46 (2010)CrossRefGoogle Scholar
  26. 26.
    J.M. Awika, Food Res Int. 41, 532–538 (2008)CrossRefGoogle Scholar
  27. 27.
    R.A. Moyer, K.E. Hummer, C.E. Finn, B. Frei, R.E. Wrolstad, J. Agric. Food Chem. 50, 519–525 (2002)CrossRefGoogle Scholar
  28. 28.
    R. Buckow, A. Kastell, N.S. Terefe, C. Versteeg, J. Agric. Food Chem. 58, 10076–10084 (2010)CrossRefGoogle Scholar
  29. 29.
    Z.L. Lv, J. Dong, B.L. Zhang, BioResources 7, 1405–1418 (2012)CrossRefGoogle Scholar
  30. 30.
    Z.Y. Zhu, H. Zhang, L. Zhao, X. Dong, X. Li, Y.F. Chai, G.Q. Zhang, Rapid Comm. Mass Spec. 21, 1855–1856 (2007)CrossRefGoogle Scholar
  31. 31.
    T. Yokosuka, K. Yoshinari, K. Kobayashi, A. Ohtake. A. Hirabayashi, Y. Hashimoto. I. Waki, T. Takao, Rapid Comm. Mass Spec. 20, 2589–2595 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Scalzo, D. Stevenson, D. Hedderley, Food Chem. 139, 44–50 (2013)CrossRefGoogle Scholar
  33. 33.
    C. Garcia-Viguera, P. Zafrilla, F.A. Tomas-Barberan, J. Sci. Food Agric. 73, 207–213 (1997)CrossRefGoogle Scholar
  34. 34.
    J.G. Kim, H.L. Kim, S.J. Kim, K.S. Park, J. Zhejiang Univ-Sci B (Biomed & Biotechnol) 14, 793–799 (2013)CrossRefGoogle Scholar
  35. 35.
    Q.G. Tian, I. Konczak, S. Schwartz, J. Agric. Food Chem. 53, 6503–6509 (2005)CrossRefGoogle Scholar
  36. 36.
    L.Q. Sun, X.P. Ding, J. Qi, H. Yu, S.A. He, J. Zhang, H.X. Ge, B. Yu, Food Chem. 132, 759–765 (2012)CrossRefGoogle Scholar
  37. 37.
    L.F. Reyes, Z.L. Cisneros, Food Chem. 100, 885–894 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Kirca, M. Özkan, B. Cemerogh lu, Food Chem. 101, 212–218 (2007)CrossRefGoogle Scholar
  39. 39.
    O.A. Janna, A.K. Khairul, M. Maziah, Food Chem. 101, 1640–1646 (2007)CrossRefGoogle Scholar
  40. 40.
    E. Nicoue E, S. Savard, K. Belkacemi, J. Agric. Food Chem. 55, 5626–5635 (2007)CrossRefGoogle Scholar
  41. 41.
    V. Lohachoompola, M. Mulhollandb, G. Srzednickia, J. Craskea. Food Chem. 111, 249–254 (2008)CrossRefGoogle Scholar
  42. 42.
    P.B. Pertuzatti, M.T. Barcia, L.P.G. Rebello, A.S. Gómez, R.M.T. Duarte, M.C.T. Duarte, H.T. Godoy, G.I. Hermosín, J. Funct. Foods 26, 506–516 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ya Liu
    • 1
  • Yongxiao Liu
    • 2
  • Cui Tao
    • 1
  • Mei Liu
    • 1
  • Yue Pan
    • 1
  • Zhaolin Lv
    • 3
  1. 1.College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
  2. 2.The Affiliated High School of Peking UniversityBeijingChina
  3. 3.Analysis and Testing CenterBeijing Forestry UniversityBeijingChina

Personalised recommendations