Skip to main content
Log in

Physicochemical characterisation of oil palm (Elaeis guineensis) trunk syrup from the sap of different storage period as potential sweetener

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Sap from the trunk of oil palm (Elaeis guineensis) was processed into syrup in this study. Physicochemical properties of syrups produced from the sap of freshly cut oil palm trunks (OPT0syrup) and sap of trunks stored for 60 days (OPT60syrup) at ambient temperature were compared to nipa palm syrup (Nsyrup), maple syrup (Msyrup), and two commercial glucose syrups (G1syrup and G2syrup). The total soluble solids for the syrups (OPT0sy, OPT60sy, Nsy, Msy, G1sy and G2sy) were in the range of 66 to 82 ˚Brix. The sugar analysis indicated that glucose was the main sugar for OPT0sy and OPT60sy as 367 and 300 mg/g, respectively, whereby sucrose was the foremost sugar for Nsy and Msy. The colour of the syrups was ranked from the darkest to the lightest; OPT60syrup > OPT0syrup > Msyrup > Nsyrup > G1syrup > G2syrup. OPT0syrup and OPT60syrup achieved reducing capacity of 825 and 886 mg GAE/100 g, respectively, significantly higher than other syrups. The free radical scavenging activities of OPT0syrup and OPT60syrup were 74% and 70%, respectively. In conclusion, the oil palm trunk syrup has similar physicochemical properties with the commercial syrups, and it has the potential to be an alternative to the commercial sweeteners with added nutritional benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Yamada, R. Tanaka, O. Sulaiman, R. Hashim, Z.A.A. Hamid, M.K.A. Yahya, A. Kosugi, T. Arai, Y. Murata, S. Nirasawa, K. Yamamoto, S. Ohara, M.N.M. Yusof, W.A. Ibrahim, Y. Mori, Old oil palm trunk: a promising source of sugars for bioethanol production. Biomass Bioenerg. 34, 1608–1613 (2010)

    Article  CAS  Google Scholar 

  2. S. Jalani, B. Yusof, D. Ariffin, K.W. Chan, N. Rajanaidu, Prospects of elevating national oil palm productivity: a Malaysian perspective. Oil Palm Ind. Econ. J. 2(2), 1–9 (2002)

    Google Scholar 

  3. I. Wan-Asma, S. Mahanim, H. Zulkafli, S. Osman, S.Y. Mori, in Regional Workshop on UNEP/DTIE/IETC in collaboration with GEC (Osaka, Japan, 2010)

  4. K.O. Lim, F.H. Ahmaddin, S.M. Vizhi, A note on the conversion of oil-palm trunks to glucose via acid hydrolysis. Bioresour. Technol. 59(1), 33–35 (1997)

    Article  CAS  Google Scholar 

  5. P. Hull, Glucose Syrups: Technology and Applications (John Wiley & Sons, Singapore, 2010), pp. 1–388

    Book  Google Scholar 

  6. A. Keating, R.A. Chez, Ginger syrup as an antiemetic in early pregnancy. Altern. Ther. Health Med. 8(5), 89–91 (2002)

    PubMed  Google Scholar 

  7. G.A. Bray, S.J. Nielsen, B.M. Popkin, Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79(4), 537–543 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. K.A. Strauss, B. Wardley, D. Robinson, C. Hendrickson, N.L. Rider, E.G. Puffenberger, D. Shellmer, A.B. Moser, D.H. Morton, Classical maple syrup urine disease and brain development: principles of management and formula design. Mol. Genet. Metab. 99(4), 333–345 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Kosugi, R. Tanaka, K. Magara, Y. Murata, T. Arai, S. Othman, H. Rokiah, Z.A.H. Aimi, M.A.Y. Khairul, M.M.Y. Nor, I. Wan-Asma, Y. Mori, Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting. J. Biosci. Bioeng. 110(3), 322–325 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. P. Noparat, P. Prasertsan, Isolation and characterization of high hydrogen producing strain Clostridium beijerinckii PS-3 from fermented oil palm sap. ‎Int. J. Hydrog. Energy 36(21), 14086–14092 (2011)

    Article  CAS  Google Scholar 

  11. B.E. Lokesh, Z.A.A. Hamid, T. Arai, A. Kosugi, Y. Murata, R. Hashim, S. Othman, Y. Mori, K. Sudesh, Potential of oil palm trunk sap as a novel inexpensive renewable carbon feedstock for polyhydroxyalkanoate biosynthesis and as a bacterial growth medium. Clean (Weinh) 40(3), 310–317 (2012)

    CAS  Google Scholar 

  12. Y. Murata, R. Tanaka, K. Fujimoto, A. Kosugi, T. Arai, E. Togawa, T. Takano, W.A. Ibrahim, P. Elham, O. Sulaiman, R. Hashim, Y. Mori, Development of sap compressing systems from oil palm trunk. Biomass Bioenerg. 51, 8–16 (2013)

    Article  CAS  Google Scholar 

  13. I.B. Thabet, S. Besbes, M. Masmoudi, H. Attia, C. Deroanne, C. Blecker, Compositional, physical, antioxidant and sensory characteristics of novel syrup from date palm (Phoenix dactylifera L.). Food Sci. Technol. Int. 15(6), 583–590 (2009)

    Article  CAS  Google Scholar 

  14. M. Al-Farsi, C. Alasalvar, A. Morris, M. Baron, F. Shahidi, Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 53(19), 7592–7599 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. L. Li, N.P. Seeram, Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds. J. Agric. Food Chem. 58(22), 11673–11679 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995)

    Article  CAS  Google Scholar 

  17. C.G.A. Davies, T.P. Labuza, The Maillard Reaction: Application to Confectionery Products (Penn State University Press, Minnesota, 1997), pp. 35–66

    Google Scholar 

  18. M.M. Theron, J.R. Lues, Organic Acids and Food Preservation (CRC Press, Boca Raton, 2010), pp. 1–340

    Book  Google Scholar 

  19. A. Etienne, M. Génard, P. Lobit, D. Mbeguié-A-Mbéguié, C. Bugaud, What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 64(6), 1451–1469 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. F.K. Alanazi, Utilization of date syrup as a tablet binder, comparative study. Saudi Pharm. J. 18(2), 81–89 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S.I. Martins, W.M. Jongen, M.A.V. Boekel, A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 11(9), 364–373 (2001)

    Google Scholar 

  22. O.O. James, M.A. Mesubi, L.A. Usman, S.O. Yeye, K.O. Anjaku, K.O. Ogunniran, O.O. Ajani, T.O. Siyanbola, Physical characterisation of some honey samples from North-Central Nigeria. Int. J. Phys. Sci. 4(9), 464–470 (2009)

    CAS  Google Scholar 

  23. W.P. Schellart, Rheology and density of glucose syrup and honey: determining their suitability for usage in analogue and fluid dynamic models of geological processes. J. Struct. Geol. 33(6), 1079–1088 (2011)

    Article  Google Scholar 

  24. T.D. Perkins, A.K.V.D. Berg, Chap. 4 Maple syrup—production, composition, chemistry, and sensory characteristics. Adv. Food. Nutr. Res. 56, 101–143 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. A. Mondal, R.L. Buchanan, Y.M. Lo, Computational fluid dynamics approaches in quality and hygienic production of semisolid low-moisture foods: a review of critical factors. J. Food. Sci. 79(10), 1861–1870 (2014)

    Article  CAS  Google Scholar 

  26. D.W. Ball, The chemical composition of maple syrup. J. Chem. Educ. 84(10), 1647–1650 (2007)

    Article  CAS  Google Scholar 

  27. J.M. deMan, Principles of Food Chemistry, 3rd edn. (Aspen Publishers, Inc., Maryland, 1999), pp. 163–208

    Book  Google Scholar 

  28. E. Kim, Relationship between viscosity and sugar concentration in aqueous sugar solution using the Stokes’ Law and Newton’s First Law of Motion. Science One Program (The University of British Columbia, Canada, 2010). https://circle.ubc.ca/bitstream/handle/2429/25322/Kim_Evelyn_Science_. Accessed 19 July 2018

  29. C.W. Chang, R.D. Ryan, Effects of water stress on starch and sucrose metabolism in cotton leaves. Starch-Stärke 39(3), 84–87 (1987)

    Article  CAS  Google Scholar 

  30. K. Maruyama, M. Takeda, S. Kidokoro, K. Yamada, Y. Sakuma, K. Urano, M. Fujita, K. Yoshiwara, S. Matsukura, Y. Morishita, R. Sasaki, H. Suzuki, K. Saito, D. Shibata, K. Shinozaki, K. Yamaguchi-Shinozaki, Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol. 150(4), 1972–1980 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J.F. Fox, Harvest of the Palm, Ecological Change in Eastern Indonesia (Harvard University Press, Cambridge, 1977), pp. 1–290

    Book  Google Scholar 

  32. C. Dalibard, Overall view on the tradition of tapping palm trees and prospects for animal production. Livest. Res. Rural Dev. 11(1), 1–37 (1999)

    Google Scholar 

  33. M. Chisari, R.N. Barbagallo, G. Spagna, Characterization and role of polyphenol oxidase and peroxidase in browning of fresh-cut melon. J. Agric. Food Chem. 56(1), 132–138 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. R. Banerji, P. Singh, S.I. Anwar, S. Solomon, Effect of reducing sugars on non-enzymic browning during thermo-evaporation of sugarcane juice for making jaggery. Sugar Tech. 14(4), 428–431 (2012)

    Article  CAS  Google Scholar 

  35. L. Hobbs, Starch: Chemistry and Technology, 3rd edn. (Academic Press, Elsevier, London, 2009), pp. 6–7

    Google Scholar 

  36. Z.A.H. Aimi, T. Arai, M.R.S. Fatimah, A. Kosugi, O. Sulaiman, R. Hashim, S. Nirasawa, T. Ryokei, B.E. Lokesh, K. Sudesh, Y. Murata, Analysis of free sugar and starch in oil palm trunks (Elaeis guineensis Jacq.) from various cultivars as a feedstock for bioethanol production. Int. J. Green Energy 1, 37–41 (2015)

    Google Scholar 

  37. S. Kermasha, M. Goetghebeur, J. Dumont, Determination of phenolic compound profiles in maple products by high-performance liquid chromatography. J. Agric. Food Chem. 43(3), 708–716 (1995) (1995)

    Article  CAS  Google Scholar 

  38. M. Boscaiu, I. Bautista, P. Donat, J. Llinares, L.L.U.L. Cristina, O. Mayoral, O. Vicente, Phenolic compounds as stress markers in plants from gypsum habitats. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 67(1), 44–49 (2010)

    Google Scholar 

  39. M. Thériault, S. Caillet, S. Kermasha, M. Lacroix, Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chem. 98(3), 490–501 (2006)

    Article  CAS  Google Scholar 

  40. J.B. Harborne, Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 3rd edn. (Chapman and Hall, London, 1984), pp. 1–286

    Book  Google Scholar 

  41. J. Gruz, F.A. Ayaz, H. Torun, M. Strnad, Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 124(1), 271–277 (2011)

    Article  CAS  Google Scholar 

  42. N. Gheldof, X.H. Wang, N.J. Engeseth, Identification and quantification of antioxidant compounds of honeys form various floral sources. J. Agric. Food Chem. 50, 5870–5877 (2002) (2002)

    Article  CAS  PubMed  Google Scholar 

  43. D.D. Schramm, M. Karim, H.R. Schrader, R.R. Holt, M. Cardetti, C.L. Keen, Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 51(6), 1732–1735 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. J. Legault, K. Girard-Lalancette, C. Grenon, C. Dussault, A. Pichette, Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum. J. Med. Food. 13(2), 460–468 (2010)

    Article  PubMed  Google Scholar 

  45. P. Górnaś, E. Šnē, A. Siger, D. Segliņa, Sea buckthorn (Hippophae rhamnoides L.) leaves as valuable source of lipophilic antioxidants: the effect of harvest time, sex, drying and extraction methods. Ind. Crops. Prod. 60, 1–7 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the FRGS Grants (203/PTEKIND/6711370) and (203/PTEKIND/6711530) for the current research project, and the Forest Research Institute of Malaysia for supplying the oil palm trunk samples. Syazana, S. thanks MyBrain for financial assistance during the period of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilah Ariffin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, S., Kamilah, H., Mahmood, K. et al. Physicochemical characterisation of oil palm (Elaeis guineensis) trunk syrup from the sap of different storage period as potential sweetener. Food Measure 13, 1011–1019 (2019). https://doi.org/10.1007/s11694-018-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-0015-y

Keywords

Navigation