Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits

  • Amina A. AlyEmail author
  • Hoda G. M. Ali
  • Noha E. R. Eliwa
Original Paper


Berries are tasteful fruits and are widely believed to be a source of health beneficial compounds. The aim of this study is to evaluate the bioactive compounds of the fruits of berries including anthocyanins, ascorbic acid, lycopene and β-carotene as well as Fourier Transform Infrared spectroscopy (FT-IR) of ethanolic extracts of eight different types of berries (black berry, raspberry, red currant berry, crane berry, Egyptian black mulberry, blueberry, long mulberry and strawberry). The results confirmed the presence of a variety of phytochemicals including; tannins, coumarins, steroids, carbohydrates, volatile oils, amino acids, quinones, xanthoproteics and phenols at high concentration in most types of berries studied. Black berry, crane berry and blueberry showed the appearance of all phytochemical constituents tested, while long mulberry showed the lowest concentration of these constituents. Fourier Transform Infrared (FT-IR) spectroscopy technique showed the characterization of compounds or functional groups found in the lyophilized powder of berries fruits. Also, antimicrobial activity of methanolic extracts of berries was tested, the results revealed that the ethanolic extract of Egyptian black mulberry had the highest antimicrobial activity against the tested bacteria; Staphylococcus aureus, Streptococcus fecalis, P. aeruginosa, Escherichia coli and Bacillus cereus and the tested fungi; Aspergillus flavus, Aspergillus niger Penicillium sp. and Rhizopus sp.


Berries Phytochemical screening Anthocyanin Vitamin C Antimicrobial Fourier Transform Infrared (FT-IR) 



The authors would like to thank the Atomic Energy Authority for supporting and funding this study. Thanks should also extend to the central laboratories at the National Center for Radiation Research and Technology for their help in running FT-IR analysis. Finally, the authors would like to thank the reviewers for their counteractive observations and comments that contributed to improve this study.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper


  1. 1.
    S. Basu, J. Thomas, S. Acharya, Aust. J. Basic Appl. Sci. 1, 637 (2007)Google Scholar
  2. 2.
    M.F. D’Agostino, J. Sanz, I. Martínez-Castro, A.M. Giuffrè, V. Sicari, A.C. Soria, Talanta 125, 248 (2014)CrossRefGoogle Scholar
  3. 3.
    R. Asghari, Ital. J. Food Sci. 27 (2015)Google Scholar
  4. 4.
    M.F. D’Agostino, J. Sanz, M.L. Sanz, A.M. Giuffrè, V. Sicari, A.C. Soria, Food Chem. 178, 10 (2015)CrossRefGoogle Scholar
  5. 5.
    B. Kapur, M.A. Sarıdaş, E. Çeliktopuz, E. Kafkas, S.P. Karg, Food Chem. 263, 67 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Maghenzani, V. Chiabrando, N. Giuggioli, C. Peano, G. Giacalone, Ital. J. Food Sci. 29, 476 (2017)Google Scholar
  7. 7.
    V.R. De souza, P.A. Pereira, T.L. Da silva, R. Pio, F. Queiroz, L.C. De oliveira lima, Food Chem. 156, 362 (2014)CrossRefGoogle Scholar
  8. 8.
    A.M. Giuffrè, L. Louadj, P. Rizzo, M. Poiana, V. Sicari, Food Control 97(3), 105 (2019)CrossRefGoogle Scholar
  9. 9.
    K. Molder, U. Moor, T. Tonutare, P. Poldma, J. Fruit Ornam. Plant Res. 19, 145 (2011)Google Scholar
  10. 10.
    J. Castagnini, N. Betoret, E. Betoret, P. Fito, Food Sci. Techn. 64, 1289 (2015)Google Scholar
  11. 11.
    Y. Tian, J. Liimatainen, A.L. Alanne, A. Lindstedt, P. Liu, J. Sinkkonen, H. Kallio, B. Yang, Food Chem. 220, 266 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Lazze, M. Savio, R. Pizzala, O. Cazzalini, P. Perucca, A.I. Scovassi, L.A. Stivala, L. Bianchi, Carcinogenesis 25, 1427 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Yuodim, J. Mcdonald, W. Kalt, J. Joseph, J. Nutr. Biochem. 13, 282 (2002)CrossRefGoogle Scholar
  14. 14.
    K. Rodríguez, K.S. Ah-Hen, A. Vega-Gálvez, V. Vásquez, I. Quispe-Fuentes, P. Rojas, R. Lemus Mondaca, Food Sci. Technol. 65, 537 (2016)Google Scholar
  15. 15.
    G. Gunes, R. Liu, B.C. Watkins, J. Agric. Food Chem. 50, 5932 (2002)CrossRefGoogle Scholar
  16. 16.
    J. Piljac-Žegarac, D. Šamec, Food Res. Int. 44, 345 (2011)CrossRefGoogle Scholar
  17. 17.
    A.M. Giuffrè, Eur. Food Res. Technol. 237, 555 (2013)CrossRefGoogle Scholar
  18. 18.
    V. Sicari, M.T. Pellicanò, A.M. Giuffrè, C. Zappia, M. Capocasale, J. Food Meas. Charact. 10, 773 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Saito, C.L. Xiao, Acta Hortic. 180, 123 (2017)CrossRefGoogle Scholar
  20. 20.
    A.M. Giuffrè, C. Zappia, M. Capocasale, Int. J. Food Prop. 20, 1930 (2017)Google Scholar
  21. 21.
    V. Sicari, G. Dorato, A.M. Giuffrè, P. Rizzo, A.R. Albunia, J. Food Process. Preserv. 41, e13168 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Nemzer, L. Vargas, X. Xia, M. Sintara, H. Feng, Food Chem. 262, 242 (2018)CrossRefGoogle Scholar
  23. 23.
    R. Puupponen-pimiä, L. Nohynek, H. ALakomi, K. Oksman-caldentey, Appl. Microbiol. Biotechnol. 67, 8 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Liu, Y. Zhang, J. Zhang, G. Fan, Y. Tu, S. Sun, X. Shen, Q. Li, Y. Zhang, Infrared Phys. Technol. 89, 154 (2018)CrossRefGoogle Scholar
  25. 25.
    X. Lu, J. Wang, H. Al-Qadiri, C. Ross, J. Powers, Food Chem. 129, 637 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Sobhy, M. Abdalla, S. Ammar, Food Chem. 112, 595 (2009)CrossRefGoogle Scholar
  27. 27.
    G. Trease, W. Evans, Text book of Pharmocognosy, 14th edn. (Alden Press, Oxford, 1989), p. 213Google Scholar
  28. 28.
    J. Harborne, Phytochemical method, 3rd edn. (Chapman and Hall, London, 1993), p. 135Google Scholar
  29. 29.
    T. Fuleki, F. Francis, J. Food Sci. 33, 72 (1968)CrossRefGoogle Scholar
  30. 30.
    C.T. Du, F.J. Francis, J. Food Sci. 38, 810 (1973)CrossRefGoogle Scholar
  31. 31.
    A.O.A.C., Official Methods of Analysis of the Association of Official Analytical Chemists 17th ed. (Association of Official Analytical Chemists, Rockville, 2000)Google Scholar
  32. 32.
    M. Nagata, I. Yamashita, J. Food Sci. Technol. 39, 925 (1992)CrossRefGoogle Scholar
  33. 33.
    M. Mishra, R. Padhy, Osong Public Health Res. Perspect. 4, 347 (2013)CrossRefGoogle Scholar
  34. 34.
    D.B. Duncan, Multiple range and multiple F tests. Biometrics 11, 1 (1955)CrossRefGoogle Scholar
  35. 35.
    P. Reque, R. Steffens, A.L. da Silva, A. Jablonski, S. Flôres, A. Rios, E. Jong, Food Sci. Technol. 34, 773 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Nahak, R. Sahu, Nat. Sci. 8, 77 (2010)Google Scholar
  37. 37.
    G. Zhao, R. Zhang, L. Liu, Y. Deng, Z. Wei, Y. Zhang, Y. Ma, M. Zhang, Food Sci. Technol. 79, 260 (2017)Google Scholar
  38. 38.
    H. Son, P. Yen, Trop. J. Pharm. Res. 13, 907 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Mathur, R. Agrawal, V. Shrivastava, Recent Res. Sci. Technol. 3, 26 (2011)Google Scholar
  40. 40.
    G. Giovanelli, S. Buratti, Food Chem. 112, 903 (2009)CrossRefGoogle Scholar
  41. 41.
    J. Kong, L. Chia, N. Goh, T. Chia, R. Brouillard, Phytochem. 64, 923 (2003)CrossRefGoogle Scholar
  42. 42.
    Y. Zhao, Berry Fruit: Value-Added Products for Health Promotion, (C.R.C. Press, Boca Raton, 2007)CrossRefGoogle Scholar
  43. 43.
    Z. Diaconeasa, F. Ranga, D. Rugină, L. Leopold, O. Pop, D. Vodnar, L. Cuibus, C. Socaciu, Bull. UASVM Food Sci. Technol. 72, 99 (2015)Google Scholar
  44. 44.
    D. Marinova, F. Ribarova, J. Food Compos. Anal. 20, 370 (2007)CrossRefGoogle Scholar
  45. 45.
    I. Lefèvre, J. Ziebel, C. Guignard, A. Sorokin, O. Tikhonova, N. Dolganova, L. Hoffmann, P. Eyzaguirre, J. Hausman, J. Berry Res. 1, 159 (2011)Google Scholar
  46. 46.
    Z. El-Astal, A. Ashour, A. Kerrit, Pak. J. Med. Sci. 21, 187 (2005)Google Scholar
  47. 47.
    V.R. de Souza, P.A.P. Pereira, T.L.T. da Silva, L.C.D. Lima, R. Pio, F. Queiroz, Food Chem. 156, 362 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Walsh, J. Maillard, A. Russell, C. Catrenich, D. Char-bonneau, R. Bartolo, J. Appl. Microbiol. 94, 240 (2003)CrossRefGoogle Scholar
  49. 49.
    K. Määttä-Riihinen, A. Kamal-Eldin, A. Törrönen, J. Agric. Food Chem. 52, 6178 (2004)CrossRefGoogle Scholar
  50. 50.
    J. Reyes-Carmona, G. Yousef, R. Martínez-Peniche, M. Lila, J. Food Sci. 70, 497 (2005)CrossRefGoogle Scholar
  51. 51.
    C. Blaga, S. Ana, B. Aleksandra, Z. Marko, Trop. J. Pharm. Res. 12, 813 (2013)Google Scholar
  52. 52.
    M. Grube, O. Muter, S. Strikauska, M. Gavare, B. Limane, J. Indian Micro. Biotech. 35, 1545 (2008)CrossRefGoogle Scholar
  53. 53.
    Z. Yu, L. Liua, Y. Xu, L. Wang, X. Tenga, X. Uoli, Carbohydr. Polym. 132, 180 (2015)CrossRefGoogle Scholar
  54. 54.
    C. Jiang, Q. Xiong, D. Gan, Y. Jiao, J. Liu, L. Ma, Carbohydr. Polym. 91, 262 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Zha, Q. Zhao, J. Chen, L. Wang, G. Zhang, H. Zhang, Carbohydr. Polym. 111, 584 (2014)CrossRefGoogle Scholar
  56. 56.
    S. Li, N. Shah, Food Chem. 165, 262 (2014)CrossRefGoogle Scholar
  57. 57.
    K. Stehfest, J. Toepel, C. Wilhelm, Plant Physiol. Biochem. 43, 717 (2005)CrossRefGoogle Scholar
  58. 58.
    X.L. Li, J.J. Xiao, X.Q. Zha, L.H. Pan, M.N. Asghar, J.P. Luo, Carbohydr. Polym. 106, 247 (2014)CrossRefGoogle Scholar
  59. 59.
    J. Parry, L. Yu, J. Food Sci. 69, 189 (2004)Google Scholar
  60. 60.
    A.A. Bhairappa, A.S. Hiraskar, Indian Streams Res. J. 5, 8 (2015)Google Scholar
  61. 61.
    S.N. Kishore Kumar, M. Suresh, S. Ashok Kumar, P. Kalaiselvi, Int. J. Current Microbiol. App. Sci. 3, 28 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amina A. Aly
    • 1
    Email author
  • Hoda G. M. Ali
    • 2
  • Noha E. R. Eliwa
    • 1
  1. 1.Natural Products DeptNational Center for Radiation Research and Technology, Atomic Energy AuthorityNasr CityEgypt
  2. 2.Nuclear Research CenterAtomic Energy AuthorityInshasEgypt

Personalised recommendations