Skip to main content

Effect of storage on oxidation stability of essential oils derived from culinary herbs and spices

Abstract

Oxidation stability of essential oils isolated from different herbs and spices was observed during 10 weeks at 10 °C. The progression in hydroperoxides which was exhibited by the increase in peroxide values (p < 0.05) was observed in all essential oils with the increase in shelf life. Amongst all tested essential oils, EC showed the highest preventive capacity against lipid oxidation. Similarly, elevated levels of thiobarbituric acid reactive substances and p-anisidine of essential oils were observed when shelf duration progressed (p < 0.05). The essential oil of EC also showed the highest antioxidative potential during the study and a negative correlation with the lipid oxidation studies was observed. As lipid-based foods are vulnerable to oxidation which leaves them off-odour and simultaneously decrease in nutritional attributes. Therefore, the application of natural antioxidants such as essential oils can be a potent substitute to reduce the rate of lipid oxidation and rancidity of food items during prolonged shelf life. Prior to addition of these antioxidant rich essential oils, it is necessary to assess the oxidation behavior of these essences to determine their antiperoxidative mechanism when incorporated in food matrices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. S. Burt, Int. J. Food Microbiol. 94(3), 223–253 (2004)

    CAS  Article  Google Scholar 

  2. C. Turek, F.C., Compr. Rev. Food Sci. Food Saf. 12(1), 40–53 (2013)

    CAS  Article  Google Scholar 

  3. G. Ruberto, M.T. Baratta, Food Chem. 69(2), 167–174 (2000)

    CAS  Article  Google Scholar 

  4. M. Saito, H. Sakagami, S. Fujisawa, Anticancer Res. 23(6C), 4693–4701 (2003)

    CAS  Google Scholar 

  5. M.A. Meier, J.O. Metzger, U.S. Schubert, Chem. Soc. Rev. 36(11), 1788–1802 (2007)

    CAS  Article  Google Scholar 

  6. B. Halliwell, S. Chirico, Am. J. Clin. Nutr. 57(5), 715S-724S (1993)

    Article  Google Scholar 

  7. C.A. Reilly, S.D. Aust, Curr. Protoc. Toxicol. 2.4, 2.4.1–2.4.13 (2001)

    Google Scholar 

  8. A. Moayedi, K. Rezaei, S. Moini, B. Keshavarz, J. Am. Oil Chem. Soc. 88(4), 503–508 (2011)

    CAS  Article  Google Scholar 

  9. B. Min, D. Ahn, Food Sci. Biotechnol. 14(1), 152–163 (2005)

    CAS  Google Scholar 

  10. S. Cheikh-Rouhou, S. Besbes, B. Hentati, C. Blecker, C. Deroanne, H. Attia, Food Chem. 101(2), 673–681 (2007)

    CAS  Article  Google Scholar 

  11. T.A. Coll, G. Chaufan, L. Pérez-Tito, M.R. Ventureira, C. Sobarzo, M. Carmen Ríos de Molina, E. Cebral, Mol. Reprod. Dev. 84(10), 1086–1099 (2017)

    CAS  Article  Google Scholar 

  12. E. Kulås, R.G. Ackman, J. Agric. Food Chem. 49(4), 1724–1729 (2001)

    Article  Google Scholar 

  13. W.T. Wai, B. Saad, B.P. Lim, Food Chem. 113(1), 285–290 (2009)

    CAS  Article  Google Scholar 

  14. J. Han, X. Weng, K. Bi, Food Chem. 106(1), 2–10 (2008)

    CAS  Article  Google Scholar 

  15. S. Takeungwongtrakul, S. Benjakul, Eur. J. Lipid Sci. Technol. 116(8), 987–995 (2014)

    CAS  Article  Google Scholar 

  16. M.M. Özcan, Ö Erel, E.E. Herken, J. Med. Food 12(1), 198–202 (2009)

    Article  Google Scholar 

  17. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, J. Food Drug Anal. 22(3), 296–302 (2014)

    CAS  Article  Google Scholar 

  18. M. Chaijan, S. Benjakul, W. Visessanguan, C. Faustman, Food Chem. 99(1), 83–91 (2006)

    CAS  Article  Google Scholar 

  19. A. Papastergiadis, E. Mubiru, H. Van Langenhove, B. De Meulenaer, J. Agric. Food Chem. 60(38), 9589–9594 (2012)

    CAS  Article  Google Scholar 

  20. Y. Zhang, L. Yang, Y. Zu, X. Chen, F. Wang, F. Liu, Food Chem. 118(3), 656–662 (2010)

    CAS  Article  Google Scholar 

  21. M. Laguerre, J. Lecomte, P. Villeneuve, Prog. Lipid Res. 46(5), 244–282 (2007)

    CAS  Article  Google Scholar 

  22. R. Steele, Understanding and Measuring the Shelf-Life of Food, ed. by J.W. Irwin, N. Hedges. Woodhead Publishing Series in Food Science, Technology and Nutrition (R Unilever and D, Sharnbrook, 2004), p. 289

    Google Scholar 

  23. S.-J. Kim, A.R. Cho, J. Han, Food Cont. 29(1), 112–120 (2013)

    CAS  Article  Google Scholar 

  24. W. Zheng, S.Y. Wang, J. Agric. Food Chem. 49(11), 5165–5170 (2001)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Miss Tahira Mohsin Ali for basically perusing the manuscript and worthwhile discussions. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayeza Naeem.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naeem, A., Abbas, T., Ali, T.M. et al. Effect of storage on oxidation stability of essential oils derived from culinary herbs and spices. Food Measure 12, 877–883 (2018). https://doi.org/10.1007/s11694-017-9702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9702-3

Keywords

  • Essential oils
  • Peroxide value
  • TBARS value
  • p-Anisidine value
  • Correlation