Encapsulation of extract prepared from irradiated onion scales in alginate beads: a potential functional food ingredient

  • Sweetie R. KanattEmail author
  • Snehal Tari
  • S. P. Chawla
Original Paper


Onion scales were irradiated and the effects of irradiation on their bioactive properties were studied. The antioxidant and antibacterial activities of extract prepared from irradiated onion scales (upto 6 kGy) were comparable to the extract prepared from non-irradiated onion scales. OSE (0–6%) were encapsulated in 2% alginate beads. The beads containing 6% OSE had the highest a* and the lowest L* values as compared to neat beads that were prepared without OSE. The size of the beads reduced significantly from 2.42 mm (0% OSE) to 2.05 mm (6% OSE). The moisture content of neat (0% OSE) beads was 95.94% as compared to 93.86% in beads incorporated with 6% OSE. Alginate beads containing 6% OSE had the maximum swelling capacity. On basis of DPPH radical scavenging antioxidant assay it was observed that alginate beads containing 6% OSE showed the maximum antioxidant activity. In simulated gastric and intestinal fluid, the antioxidant activity of the beads containing OSE was retained. Irradiated minced chicken muscles containing 6% OSE alginate beads had lower TBARS value (2.0 mg MDA kg−1 meat) as compared to 3.3 mg MDA kg−1 meat for irradiated meat with 0% OSE. There was significant difference (almost 2 log cycle reduction) in the growth of Staphylococcus aureus, Pseudomonas fluorescens in chicken muscle during chilled storage when OSE encapsulated beads were incorporated. Hence, irradiation of onion scales and its encapsulation in alginate beads has a great potential as a functional ingredient in various food products.


Irradiation Onion scales Encapsulation Calcium alginate beads Chicken muscle 


  1. 1.
    R. Slimestad, T. Fossen, I.M. Vagen, J. Agric. Food Chem. 55, 10067–10080 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, Y. Jiang, Nutr. Res. 23, 1719–1726 (2003)CrossRefGoogle Scholar
  3. 3.
    X. Fan, K.J.B. Sokorai, J. Food Sci. 73, S367-S372 (2008)Google Scholar
  4. 4.
    N. Sadoughi, R. Karim, D.M. Hashim, H.M. Ghazali, J Food Process. Pres. 37, 889–898 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Tripathi, S. Chatterjee, J. Vaishnav, P.S. Variyar, A. Sharma, Postharvest. Biol. Technol. 76, 17–25 (2013)CrossRefGoogle Scholar
  6. 6.
    K.F. Khattak, T.J. Simpson, Ihasnullah, Food Chem. 110, 967–972 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Gupta, R. Padole, P. Variyar, A. Sharma, Radiat. Phys. Chem. 111, 46–56 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Li, M. Hu, Y. Du, H. Xiao, D.J. McClements, Food Hydrocolloid. 25, 122–130 (2011)CrossRefGoogle Scholar
  9. 9.
    V.L. Singleton, J.A. Rossi, Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  10. 10.
    D.O. Kim, S.W. Jeong, C.Y. Lee, Food Chem. 81, 321–326 (2003)CrossRefGoogle Scholar
  11. 11.
    T. Yamaguchi, H. Takamura, T. Matoba, J. Terao, Biosci. Biotechnol. Biochem. 62, 1201–1204 (1998)CrossRefGoogle Scholar
  12. 12.
    G. Stanciu, L. Simona, C. Sava, S. Zagan, Ovidius Univ. Ann. Chem. 21, 101–104 (2010)Google Scholar
  13. 13.
    Y.S. Velioglu, G. Mazza, L. Gao, B.D. Oomah, J. Agric. Food Chem. 46, 4113–4117 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Oyaizu, Jpn. J. Nutr. 44, 307–315 (1986)CrossRefGoogle Scholar
  15. 15.
    E.A. Decker, B. Welch, J. Agric. Food Chem. 38, 674–677 (1990)CrossRefGoogle Scholar
  16. 16.
    R.V. Tonon, C. Brabet, M.D. Hubinger, J. Food Eng. 88, 411–418 (2008)CrossRefGoogle Scholar
  17. 17.
    H.M. Lai, H.H. Chang, Int. J. Food Sci. Technol. 39, 201–212 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Alasnier, A. Meynier, M. Viau, G. Gandmer, J. Food Sci. 65, 9–14 (2000)CrossRefGoogle Scholar
  19. 19.
    F. Breitfellner, S. Solar, G. Sontag, J. Food Sci. 67, 517–521 (2002)CrossRefGoogle Scholar
  20. 20.
    T. Albishi, J.A. John, A.S. Al-Khalifa, F. Shahidi, J. Funct. Foods 5, 1191–1203 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Harris, N. Brunton, U. Tiwari, E. Cummins, Food Chem. 187, 135–139 (2015)CrossRefGoogle Scholar
  22. 22.
    F.A. Ramos, Y. Takaishi, M. Shirotori, Y. Kawaguchi, K. Tsuchiya, H. Shibata, J. Agric. Food Chem. 54, 3551–3557 (2006)CrossRefGoogle Scholar
  23. 23.
    J. Xue, P.M. Davidson, Q. Zhong, J. Agric. Food Chem. 61, 12720–12726 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Belšcˇak-Cvitanovic, D. Komes, S. Karlovic, S. Djakovic, I. Špoljaric, G. Mršic, D. Jezˇeka, Food Chem. 167, 378–386 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Li, S.Y. Kim, X. Chen, H.J. Park, LWT Food Sci. Technol. 68, 667–673 (2016)CrossRefGoogle Scholar
  26. 26.
    S.K. Bajpai, S. Sharma, React. Funct. Polym. 59, 129–140 (2004)CrossRefGoogle Scholar
  27. 27.
    E. Chan, Carbohyd. Polym. 84, 1267–1275 (2011)CrossRefGoogle Scholar
  28. 28.
    W. Zam, G. Bashour, W. Abdelwahed, W. Khayata, Braz. J. Pharm. Sci. 50, 741–748 (2014)CrossRefGoogle Scholar
  29. 29.
    E.S. Chan, Z.H. Yim, S.H. Phan, R.F. Mansa, P. Ravindra, Food Bioprod. Process. 88, 195–201 (2010)CrossRefGoogle Scholar
  30. 30.
    D.U. Ahn, C. Jo, M. Du, D.G. Olson, K.C. Nam, Meat Sci. 56, 203–209 (2000)CrossRefGoogle Scholar
  31. 31.
    X. Tang, D.A. Cronin, Food Chem. 100, 712–718 (2007)CrossRefGoogle Scholar
  32. 32.
    S.Y. Shim, Y.S. Choi, H.Y. Kim, H.W. Kim, K.E. Hwang, D.H. Song, M.A. Lee, J.W. Lee, C.J. Kim, Food Sci. Biotechnol. 21, 565–572 (2012)CrossRefGoogle Scholar
  33. 33.
    J.E. Kim, A.R. Kim, M.J. Kim, S.N. Park, Appl. Chem. Eng. 22, 178–184 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Sweetie R. Kanatt
    • 1
    Email author
  • Snehal Tari
    • 2
  • S. P. Chawla
    • 1
  1. 1.Food Technology DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Ramnarain Ruia College of Arts and ScienceMumbaiIndia

Personalised recommendations