Advertisement

Borago officinalis L. flower: a comprehensive study on bioactive compounds and its health-promoting properties

  • Ehsan KarimiEmail author
  • Ehsan OskoueianEmail author
  • Afshin Karimi
  • Reza Noura
  • Mahdi Ebrahimi
Original Paper

Abstract

The herbal plant Borago officinalis L. flower were analysed for its bioactive compounds and antioxidant, antibacterial, anti-inflammatory and anticancer activities using different solvent polarities (methanol, ethanol and water). The RP-HPLC analyses of the methanolic extract confirmed the presence of phenolics (gallic acid, pyrogallol, salicylic acid, caffeic acid), flavonoids (myricetin, rutin) and isoflavonoid (daidzein). Besides, the major individual fatty acids of methanolic extract were α-linolenic, stearidonic, palmitic, linoleic and γ-linolenic acids. The methanolic extract possessed the highest antioxidant properties as compared to the ethanolic and water extracts. The flower methanolic, ethanolic and water extracts showed high, moderate and weak antibacterial activities against common human and foodborne pathogenic bacteria, respectively. Furthermore, the flower extracts showed weak anti-inflammatory in murine RAW 264.7 macrophage cells and low anticancer properties against human hepatic, prostate and colon cancer cells. This high-value flower could be considered as a source of putative antioxidant and antibacterial compounds to improve the human health and to be used as biopreservative in food and cosmetic industries.

Keywords

Antibacterial Anticancer Anti-inflammatory Antioxidant Phenolics 

Notes

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    G.P.P. Lima, F. Vianello, C.R. Correa, R.A.S. Campos, M.G. Borguini, Polyphenols in fruits and vegetables and its effect on human health. Food Nutr. Sci. 5, 1065–1082 (2014)CrossRefGoogle Scholar
  2. 2.
    A.L. Hale, L. Reddivari, M.N. Nzaramba, J.B. Bamberg, J.C. Miller Jr., Interspecific variability for antioxidant activity and phenolic content among solanum species. Am. J. Potato Res. 85, 332–341 (2008)CrossRefGoogle Scholar
  3. 3.
    E. Karimi, H. Jaafar, A. Ghasemzadeh, M. Ebrahimi, Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol. Res. 48(9), 1–6 (2015)Google Scholar
  4. 4.
    A. Oskoueian, R.S. Haghihi, M. Ebrahimi, W.Z. Saad, A.R. Omar, Y.W. Ho, Bioactive compounds, antioxidants, tyrosinase inhibition, xanthine oxidase inhibition, anticholinesterase and antiinflammatory activities of Prunus mahaleb L. Seed. J. Med. Plants Res. 6(2), 225–233 (2012)Google Scholar
  5. 5.
    K.R. Narazana, M.S. Reddy, M.R. Chaluvadi, D.R. Krishna, Broflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol. 33, 2–16 (2001)Google Scholar
  6. 6.
    E. Karimi, H.Z.E. Jaafar, S. Ahmad, Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: from microwave obtained extracts. BMC Complement. Altern. Med. 13(20), 1–10 (2013)Google Scholar
  7. 7.
    E. Oskoueian, N. Abdullah, S. Ahmad, E. Oskouein, Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J. Med. Plants Res. 5(1), 49–57 (2011)Google Scholar
  8. 8.
    G. Duthie, A. Crozier, Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 11, 43–47 (2000)CrossRefGoogle Scholar
  9. 9.
    J. Moline, I.F. Bukharovich, M.S. Wolff, R. Phillips, Dietary flavonoids and hypertension: is there a link? Med. Hypotheses 55, 306–309 (2000)CrossRefGoogle Scholar
  10. 10.
    R.L. Prior, X. Wu, K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005)CrossRefGoogle Scholar
  11. 11.
    J.M.C. Brunet, G.S. Cetkovic, S.M. Djilas, V.T. Tumbas, S.S. Savatovie, A.I. Mandie, S.L. Markov, D.D. Cvetkovic, Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. Int. J. Food Sci. Technol. 44, 269–278 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Asadi-Samani, M. Bahmani, M. Rafieian-Kopaei, The chemical composition, botanical characteristic and biological activities of Borago officinalis: a review. Asian Pac. J. Trop. Med. 7, S22–S28 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Ratz-Łyko, A. Herman, J. Arct, K. Pytkowska, Evaluation of antioxidant and antimicrobial activities of Oenothera biennis, Borago officinalis, and Nigella sativa seedcake extracts. Food Sci. Biotechnol. 23(4), 1029–1036 (2014)CrossRefGoogle Scholar
  14. 14.
    G. Oboh, A.O. Ademosun, Comparative studies on the ability of crude polyphenols from some Nigerian citrus peels to prevent lipid peroxidation in vitro. Asian J. Biochem. 1(2), 169–177 (2006)CrossRefGoogle Scholar
  15. 15.
    M.D. Lozano-Baena, I. Tasset, A. Muñoz-Serrano, Á Alonso-Moraga, A. Haro-Bailón, Cancer prevention and health benefices of traditionally consumed Borago officinalis plants. Nutrients 8(1), 48 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Crozier, E. Jensen, M.E.J. Lean, M.S. McDonald, Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 761, 315–321 (1997)CrossRefGoogle Scholar
  17. 17.
    I. Gulcin, I. Gungor Sat, S. Beydemir, M. Elmastas, O. Irfan Kufrevioglu, Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 87, 393–400 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Hendra, S. Ahmad, E. Oskoueian, A. Sukari, M.Y. Shukor, Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff fruit. BMC Complement. Altern. Med. 11, 1–11 (2011)CrossRefGoogle Scholar
  19. 19.
    H.I. Ismail, K.W. Chan, A.A. Mariod, M. Ismail, Phenolic content and antioxidant activity of cantaloupe (cucumis melo) methanolic extracts. Food Chem. 119, 643–647 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Folch, M. Lees, G.H.A. Sloane, Stanely, Simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1975)Google Scholar
  21. 21.
    M. Ebrahimi, M.A. Rajion, Y.M. Goh, Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients 6(9), 3913–3928 (2014)CrossRefGoogle Scholar
  22. 22.
    G.C. Yen, P.D. Duh, Scavenging effect methanolic extracts of peanut hulls on free-radical and active oxygen species. J. Agri. Food Chem. 42, 629–632 (1994)CrossRefGoogle Scholar
  23. 23.
    P.J. Tsai, T.H. Tsai, C.H. Yu, S.C. Ho, Comparison of NO-scavenging and NO suppressing activities of different herbal teas with those of green tea. Food Chem. 103, 181–187 (2007)CrossRefGoogle Scholar
  24. 24.
    G.C. Yen, H.Y. Chen, Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agri. Food Chem. 43, 27–32 (1995)CrossRefGoogle Scholar
  25. 25.
    O. Boussaada, J. Chriaa, R. Nabli, S. Ammar, D. Saidana, M.A. Mahjoub, I. Chraeif, A.N. Helal, Z. Mighri, Antimicrobial and antioxidant activities of methanol extracts of Evax pygmaea (Asteraceae) growing wild in Tunisia. World J. Microb. Biotechnol. 24, 1289–1296 (2008)CrossRefGoogle Scholar
  26. 26.
    R. Ahmad, A.M. Ali, D.A. Israf, N.H. Ismail, K. Shaari, N.H. Lajis, Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sci. 76, 1953–1964 (2015)CrossRefGoogle Scholar
  27. 27.
    E. Karimi, E. Oskoueian, R. Hendra, H.Z.E. Jaafar, Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15, 6244–6256 (2010)CrossRefGoogle Scholar
  28. 28.
    E.A. Hayouni, M. Abedrabba, M. Bouix, M. Hamdi, The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercuscoccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 105, 1126–1134 (2007)CrossRefGoogle Scholar
  29. 29.
    R. Zadernowskia, M. Naczkb, H. Nowak-Polakowska, Phenolic acids of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.). ‎J. Am. Oil Chem. Soc. 79, 335–338 (2002)CrossRefGoogle Scholar
  30. 30.
    B. Mhamdi, W.W. Aidi, T. Chahed, R. Ksouri, B. Marzouk, Phenolic compounds and antiradical scavenging activity changes during borago officinalis stalk leaf development. Asian J. Chem. 22, 6397–6402 (2012)Google Scholar
  31. 31.
    H. Zemmouria, S. Ammarc, A. Boumendjel, M. Messarahb, A. Fekid, M. Bouazizc, Chemical composition and antioxidant activity of borago officinalis L. leaf extract growing in Algeria. Arab. J. Chem. 1, 10 (2014)Google Scholar
  32. 32.
    S.A. Pilerood, J. Prakash, Evaluation of nutritional composition and antioxidant activity of Borage (Echium amoenum) and Valerian (Valerian officinalis). Int. J. Food Sci. Technol. 51(5), 845–854 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Wettasinghe, F. Shahidi, R. Amarowicz, M.M. Abou-Zaid, Phenolic acids in defatted seeds of Borage (Borago officinalis L.). Food Chem. 75, 49–56 (2001)CrossRefGoogle Scholar
  34. 34.
    N.F. Ramandi, N.M. Najafi, F. Raofie, E. Ghasemi, Central composite design for the optimization of supercritical carbon dioxide fluid extraction of fatty acids from Borago officinalis L. Flower. J. Food Sci. 76(9), C1262–C1266 (2011)CrossRefGoogle Scholar
  35. 35.
    B. Mhamdi, W.A. Wannes, S. Bourgou, B. Marzouk, Biochemical characterization of borage (Borago officinalis L.) seeds. J. Food Biochem. 33(3), 331–341 (2009)CrossRefGoogle Scholar
  36. 36.
    V. Katalinic, M. Milos, T. Kulisic, M. Jukic, Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006)CrossRefGoogle Scholar
  37. 37.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28(1), 25–30 (1995)Google Scholar
  38. 38.
    M. Wettasinghe, F. Shahidi, Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted Borage (Borago officinalis L.) Seeds. Food Chem. 67(4), 399–414 (1999)CrossRefGoogle Scholar
  39. 39.
    D. Bandonien, M. Murkovic, The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. J. Biochem. Biophys. Methods 53.1, 45–49 (2002)CrossRefGoogle Scholar
  40. 40.
    F.J. Segoviaa, E. Luengob, J.J. Corral-Péreza, J. Rasob, M. Pilar Almajano, Improvements in the aqueous extraction of polyphenols from Borage (Borago officinalis L.) leaves by pulsed electric fields: pulsed electric fields (PEF) applications. Ind. Crops Prod. 65, 390–396 (2015)CrossRefGoogle Scholar
  41. 41.
    N.F. Crum-Cianflone, Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr. Gastroenterol. Rep. 10, 424–431 (2008)CrossRefGoogle Scholar
  42. 42.
    S. Healy, S. Cooney, C. O’Brien, P. Iversen, J. Whyte, J.J. Nally Callanan, S. Fanning, Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog. Dis. 7, 339–350 (2010)CrossRefGoogle Scholar
  43. 43.
    B. Swaminathan, P. Gerner-Smidt, The epidemiology of human listeriosis. Microbes Infect. 9, 1236–1243 (2007)CrossRefGoogle Scholar
  44. 44.
    C.L. Wilson, G.G. Droby, Microbial food contamination (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  45. 45.
    E. Ceylan, D.Y.C. Fung, Antimicrobial activity of spices. J. Rapid Methods Autom. Microbiol. 12, 1–55 (2004)CrossRefGoogle Scholar
  46. 46.
    I. Ahmad, Z. Mehmood, F. Mohammad, Screening of some Indian medicinal plants for their antimicrobial properties. J. Ethnopharmacol. 62, 183–193 (1998)CrossRefGoogle Scholar
  47. 47.
    M. Abolhassani, Antibacterial effect of Borage (Echium amoenum) on Staphylococcus aureus. Braz. J. Infect. Dis. 8(5), 382–385 (2004)CrossRefGoogle Scholar
  48. 48.
    A. Scalbert, Antimicrobial properties of tannins. Phytochemistry 30, 3875–3883 (1991)CrossRefGoogle Scholar
  49. 49.
    M.M. Cowan, Plants products as antimicrobial agents. ‎Clin. Microbiol. Rev. 12, 564–582 (1999)Google Scholar
  50. 50.
    T.P.T. Cushnie, A.J. Lamb, Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005)CrossRefGoogle Scholar
  51. 51.
    P.C. Hsieh, J.L. Mau, S.H. Huang, Antimicrobial effect of various combinations of plant extracts. Food Microbiol. 18, 35–43 (2001)CrossRefGoogle Scholar
  52. 52.
    A.I. Nazer, A. Kobilinsky, J.L. Tholozana, F. Dubois-Brissonneta, Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv. Typhimurium: a synergistic effect? Food Micobiol. 22, 391–398 (2005)CrossRefGoogle Scholar
  53. 53.
    J. Aliakbarlu, H. Tajik, Antioxidant and antibacterial activities of various extracts of borago officinalis flowers. J. Food Process. Preserv. 36, 539–544 (2012)CrossRefGoogle Scholar
  54. 54.
    A. Miceli, N. Francesca, G. Moschetti, L. Settanni, The influence of addition of Borago officinalis with antibacterial activity on the sensory quality of fresh pasta. Int. J. Gastron. Food Sci. 2(2), 93–97 (2015)CrossRefGoogle Scholar
  55. 55.
    O. Kim, A. Murakami, Y. Nakamura, H. Ohigashi, Screening of edible Japanese plants for nitric oxide generation inhibitory activities in RAW 264.7 cells. Cancer Lett. 125, 199–207 (1998)CrossRefGoogle Scholar
  56. 56.
    Y. Zou, S.K.C. Chang, Effect of black soybean extract on the suppression of the proliferation of human AGS gastric cancer cells via the induction of apoptosis. J. Agri. Food Chem. 59, 4597–4605 (2011)CrossRefGoogle Scholar
  57. 57.
    J. Boik, Natural Compounds in Cancer Therapy, vol. 1 (Oregon Medical Press, Princeton, 2001), p. 520Google Scholar
  58. 58.
    I. Borrás-Linares, S. Fernández-Arroyo, D. Arráez-Roman, P.A. Palmeros-Suárez, R.Del Val-Díaz, I. Andrade-Gonzáles, A. Fernández-Gutiérrez, J.F. Gómez-Leyva, A. Segura-Carretero, Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crops Prod. 69, 385–394 (2015)CrossRefGoogle Scholar
  59. 59.
    Y. Deng, Y. Zhao, O. Padilla-Zakour, G. Yang, Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind. Crops Prod. 74, 803–809 (2015)CrossRefGoogle Scholar
  60. 60.
    L. Tomás-Menor, A. Morales-Soto, E. Barrajón-Catalán, C. Roldán-Segura, A. Segura-Carretero, V. Micol, Correlation between the antibacterial activity and the composition of extracts derived from various spanish cistus species. Food Chem. Toxicol. 55, 313–322 (2013)CrossRefGoogle Scholar
  61. 61.
    X. Zhanga, P. Shanga, F. Qin, Q. Zhoua, B. Gaoa, H. Huangb, H. Yanga, H. Shi, L.L. Yua, Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT-Food Sci. Technol. 54(1), 171–178 (2013)CrossRefGoogle Scholar
  62. 62.
    N. Simina, D. Orcica, D. Cetojevic-Siminb, N. Mimica-Dukica, G. Anackovc, I. Bearaa, D. Mitic-Culaficd, B. Bozine, Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. Flavum, Alliaceae). LWT-Food Sci. Technol. 54(1), 139–146 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Sciences, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO)MashhadIran
  3. 3.Quality Department of NutriciaMashhad Milk Powder IndustrialMashhadIran
  4. 4.Department of AgriculturePayame Noor University (PNU)TehranIran
  5. 5.Department of Plant Science and Biotechnology, Faculty of Life Science and BiotechnologyShahid Beheshti UniversityTehranIran
  6. 6.Department of Veterinary Preclinical Sciences, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations