Advertisement

Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L.

  • Necla Ozdemir
  • Yasin Ozgen
  • Mustafa Kiralan
  • Ali Bayrak
  • Neşet Arslan
  • Mohamed Fawzy RamadanEmail author
Original Paper

Abstract

Origanum onites and Origanum vulgare are important medicinal plants because of their flavoring, therapeutic, and preservative properties. Drying methods are important for obtaining high quality essential oil from spices. In this study, the effects of different drying processes on the essential oil yield, composition, and antiradical activity were evaluated. Plants were dried under sun light, in a ventilated shady place and in laboratory-type oven, and the oils were extracted with Clevenger type apparatus. Carvacrol and thymol were the major compounds in the essential oils of O. vulgare and O. onites, respectively. The highest oil yield and the highest antioxidant activity values were obtained from shade dried Origanum species followed by oven dried plants. The lowest essential oil yield and the lowest antioxidant activity for O. vulgare were found in fresh plants. The lowest essential oil yield, and the lowest antioxidant activity for O. onites belonged to sun dried plants. It could be concluded that essential oil yield, oil composition and antioxidant activity of both plants were greatly affected by the drying method.

Keywords

Oregano oil DPPH Antiradical activity Sun drying Oven drying Shade drying 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal rights

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    M. Kiralan, A. Bayrak, O.F. Abdulaziz, T. Ozbucak, Nat. Prod. Res. 26, 132–139 (2012)CrossRefGoogle Scholar
  2. 2.
    E. De Falco, E. Mancini, G. Roscigno, E. Mignola, O. Taglialatela-Scafati, F. Senatore, Molecules 1812, 14948–14960 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Kıralan, Int. J. Food Prop. 17, 1482–1489 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Kiralan, J. Essen, Oil Bearing Plants 18, 1266–1270 (2015)CrossRefGoogle Scholar
  5. 5.
    M.F. Ramadan, M.M.S. Asker, M. Tadros, Eur. Food Res. Technol. 234, 833–844 (2012)CrossRefGoogle Scholar
  6. 6.
    M.H.M. Abdeldaiem, H.G.M. Ali, M.F. Ramadan, Food Meas. 11, 1412–1420 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Altintas, N. Tabanca, E. Tyihák, P.G. Ott, ÁM. Móricz, E. Mincsovics, D.E. Wedge, JAOAC Int. 966, 1200–1208 (2013)CrossRefGoogle Scholar
  8. 8.
    M.R. Loizzo, F. Menichini, F. Conforti, R. Tundis, M. Bonesi, A.M. Saab, G.A. Statti, E. De Cindio, B.J. Houghton, F. Menichini, N.G. Frega, Food Chem. 117, 174–180 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Skoula, J.B. Harborne, The taxonomy and chemistry of Origanum, in Oregano: The genera Origanum and Lippia, ed. by SE Kintzios (Taylor Francis, New York, 2002), pp. 67–149Google Scholar
  10. 10.
    S.E. Kintzios, Profile of the multifaceted prince of the herbs, in Oregano: The genera Origanum and Lippia, ed. by SE Kintzios (Taylor Francis, New York, 2002), pp. 3–8Google Scholar
  11. 11.
    G. Ozkan, M.M. Ozcan, Environ. Monit. Assess. 186, 4947–4957 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Sarikurkcu, G. Zengin, M. Oskay, S. Uysal, R. Ceylan, A. Aktumsek, Ind. Crops Prod. 70, 178–184 (2015)CrossRefGoogle Scholar
  13. 13.
    X.L. Zhang, Y.S. Guo, C.H. Wang, G.Q. Li, J.J. Xu, H.Y. Chung, W.C. Ye, Y.L. Li, G.C. Wang, Food Chem. 152, 300–306 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Kursat, İ Emre, Ö Yılmaz, P. Erecevit, Grasas Aceites 62, 410–417 (2011)CrossRefGoogle Scholar
  15. 15.
    G. Ozkan, H. Baydar, S. Erbas, J. Sci. Food Agric. 90, 205–209 (2011)CrossRefGoogle Scholar
  16. 16.
    A.M.A. Assiri, K. Elbanna, A. Al‑Thubiani, M.F. Ramadan, Eur. Food Res. Technol. 242, 1013–1023 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Degerli, B. Tepe, A. Celiksoz, S. Berk, E. Malatyali, Exp. Parasitol. 1311, 20–24 (2012)CrossRefGoogle Scholar
  18. 18.
    M. Mahmoodi Sourestani, M. Malekzadeh, A. Tava, J. Essent. Oil Res. 26, 177–184 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Mirhossein, M. Rahimmalek, A.G. Pirbalouti, M. Taghipoor, J. Essent. Oil Res. 27, 204–211 (2015)CrossRefGoogle Scholar
  20. 20.
    M.B. Hossain, C. Barry-Ryan, A.B. Martin-Diana, N.P. Brunton, Food Chem. 123, 85–91 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Ayyobi, G.A. Peyvast, J.A. Olfati, Ratar. Povrt. 51, 18–22 (2014)CrossRefGoogle Scholar
  22. 22.
    AOCS, AOCS Official Method Ja 2a-46. (American Oil Chemist’ Society, Champaign, 1993)Google Scholar
  23. 23.
    I. Doymaz, N. Tugul, M. Pala, J. Food Eng. 77, 559–565 (2006)CrossRefGoogle Scholar
  24. 24.
    E. Guenther, The Essential Oils: History-Origin in Plants, Production and Analysis, 3rd edn. (D. Van Nostrand Company Inc, Vol. I. New York, 1955), p. 452Google Scholar
  25. 25.
    P.R. Quiroga, N.R. Grosso, A. Lante, G. Lomolino, J.A. Zygadlo, V. Nepote, Int. J. Food Sci. Technol. 48, 642–649 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Pyrzynska, A. Pekal, Anal. Methods 5, 4288–4295 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Mishra, H. Ojha, N.K. Chaudhury, Food Chem. 130, 1036–1043 (2012)CrossRefGoogle Scholar
  28. 28.
    F. Benbelaid, M.A. Abdoune, A. Khadir, M. Bendahou, Int. J. Med. Aromat. Plants 31, 93–101 (2013)Google Scholar
  29. 29.
    G. Kaban, M. Kaya, J. Food Sci. 74, 58–63 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Kiralan, J. Food Sci. 77, 481–484 (2012)CrossRefGoogle Scholar
  31. 31.
    J.M. Lorenzo, Meat Sci. 96, 179–186 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Economou, G. Panagopoulos, P. Tarantilis, D. Kalivas, V. Kotoulas, I.S. Travlos, M. Polysiou, A. Karamanos, Ind. Crops Prod. 331, 236–241 (2011)CrossRefGoogle Scholar
  33. 33.
    O. Toncer, S. Karaman, S. Kizil, E. Diraz, Not. Bot. Horti Agrobot. Cluj-Napoca 37, 177–181 (2009)Google Scholar
  34. 34.
    S. Kizil, A. İpek, N. Arslan, K.M. Khawar, NZ J. Crop Hortic. Sci. 36, 71–76 (2008)CrossRefGoogle Scholar
  35. 35.
    F.A. Tonk, S. Yüce, E. Bayram, R.R. Akçali-Giachino, Ç Sönmez, İ Telci, M.A. Furan, Plant Syst. Evol. 288, 157–165 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Baranauskiene, P.R. Venskutonis, E. Dambrauskiene, P. Viškelis, Ind. Crops Prod. 49, 43–51 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Moradi, A. Hassani, F. Sefidkon, H. Maroofi, J. Essent. Oil Bearing Plants 18, 242–247 (2015)CrossRefGoogle Scholar
  38. 38.
    I.H. Sellami, I.B. Rebey, J. Sriti, F.Z. Rahali, F. Limam, B. Marzouk, Food Bioprocess Technol. 58, 2978–2989 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Agnaniet, T. Makani, A. Akagah, C. Menut, J.M. Bessière, Flav. Frag. J. 20, 34–38 (2005)CrossRefGoogle Scholar
  40. 40.
    M.C. Foti, K.U. Ingold, J. Agric. Food Chem. 51, 2758–2765 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Necla Ozdemir
    • 1
  • Yasin Ozgen
    • 2
  • Mustafa Kiralan
    • 3
  • Ali Bayrak
    • 1
  • Neşet Arslan
    • 2
  • Mohamed Fawzy Ramadan
    • 4
    • 5
    Email author
  1. 1.Department of Food Engineering, Faculty of EngineeringAnkara UniversityGolbasi, AnkaraTurkey
  2. 2.Department of Field Crops, Faculty of AgricultureAnkara UniversityDiskapi, AnkaraTurkey
  3. 3.Department of Food Engineering, Faculty of Engineering and ArchitectureAbant Izzet Baysal UniversityGolkoy, BoluTurkey
  4. 4.Agricultural Biochemistry Department, Faculty of AgricultureZagazig UniversityZagazigEgypt
  5. 5.Deanship of Scientific ResearchUmm Al-Qura UniversityMakkahKingdom of Saudi Arabia

Personalised recommendations