Advertisement

HPLC-ESI-MS/MS characterization of phenolics in prunus amygdalus, cultivar “umm alfahm” and its antioxidant and hepatoprotective activity

  • Helmi Moqbel
  • Seham Salah El Dine El Hawary
  • Nadia Mohammed Sokkar
  • El Motaz Bellah El-Naggar
  • Noha El Boghdady
  • Ali Mahmoud El HalawanyEmail author
Original Paper

Abstract

Metabolite profiling of the total ethanolic extract of Prunus amygdalus stem and leaves was carried out for the first time using LC-DAD-ESI-MS in the negative ion mode to investigate its chemical composition. Results revealed the identification of 33 phenolic compounds. Fifteen compounds were investigated in P. amygdalus for the first time and identified as; veratic acid, rosmarinicacid, protocatechuic acid-hexoside, 3-O-caffeoylquinic acid (neochlorogenic acid), dihydroquercetin- hexoside, coumaroyl-quinic acid, vanillic acid glucoside, cis piceid, hesperidin, dihydrokaempferol, acteoside, quercetin acetyl hexoside, homovanillic acid, fisetin-deoxyhexoside. The antioxidant potential of the total ethanolic extract (EE) and the fractions: petroleum ether (PE), chloroform (CE), ethyl acetate (EtE), methanol eluted diaion (DME) and diaion eluted with 50% methanol (D 50%E) was performed using DPPH assay. The most potent antioxidant EE, EtE and D50%E extracts (compared with vitamin C) were selected for further hepatoprotective assessment against hepatotoxicity induced by thioacetamide in a dose of 200 mg/kg compared with silymarin (50 mg/kg) as a standard drug. Results revealed the significant reversal of the deleterious effects of thioacetamide on serum ALT, AST and total protein in the order: EtE > (Silymarin = EE) > D50% E. The biochemical results were corroborated with the histological studies of liver.

Keywords

Prunus amygdalus LC-DAD-ESI-MS Phenolics Antioxidant Hepatoprotection 

Abbreviations

EE

The total ethanolic extract

PE

Petroleum ether fraction

CE

Chloroform fraction

EtE

Ethyl acetate fraction

DME

Methanol eluted diaion

M50%D

Diaion eluted with 50% methanol

Notes

Compliance with ethical standards

Conflict of interest

The authors report that there is no conflict of interest.

References

  1. 1.
    S. Agunbiade, J. Olanlokun, Pakistan J. Nutr. 5, 316–318 (2006)CrossRefGoogle Scholar
  2. 2.
    Bulletin of the Egyptian Ministry of Agriculture Statistics. Periodical Bulletin of the Egyptian Ministry of Agriculture Statistics, 2009. 354Google Scholar
  3. 3.
    G. Takeoka et al., J. Agric. Food Chem. 48, 3437–3439 (2000)CrossRefGoogle Scholar
  4. 4.
    S. Siriwardhana, F. Shahidi, JAOCS 79, 903–908 (2002)CrossRefGoogle Scholar
  5. 5.
    Q. Dong, M.S. Banaich, P.J. O’Brien, Chem. Biol. Interact. 185, 101–109 (2010)CrossRefGoogle Scholar
  6. 6.
    K.H. Shah et al., Res. J. Pharm. Biol. Chem. Sci. 2, 429–434 (2011)Google Scholar
  7. 7.
    G.A. Spiller et al., J. Am. Coll. Nutr. 17, 285–290 (1998)CrossRefGoogle Scholar
  8. 8.
    P.A. Davis, C.K. Iwahashi, Cancer Lett. 165, 27–33 (2001)CrossRefGoogle Scholar
  9. 9.
    P.E. Milbury et al., J. Agric. Chem. 54, 5027–5033 (2006)CrossRefGoogle Scholar
  10. 10.
    G.R. Takeoka, L.T. Dao, J. Agric. Food Chem. 51, 496–501 (2003)CrossRefGoogle Scholar
  11. 11.
    A.J. Esfahlan, R. Jamei, R.J. WEsfahlan, Food Chem. 120, 349–360 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Sivaci, S. Duman, Biol. Res. 47, 1–5 (2014)Google Scholar
  13. 13.
    C.R. Lima et al., Molecules 19, 9591–9605 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Li et al., Food Res. Int. 46, 250–259 (2012)CrossRefGoogle Scholar
  15. 15.
    D.O. Saleh et al., Can. J. Physiol. Pharmacol. 92, 965–973 (2014)CrossRefGoogle Scholar
  16. 16.
    S.M. Salama et al., BMC Complement. Altern. Med. 13, 56 (2013)CrossRefGoogle Scholar
  17. 17.
    K.S. Kulkarni, S.B. Kasture, S.A. Mengi, Indian J. Pharmacol. 42, 168–173 (2010)CrossRefGoogle Scholar
  18. 18.
    F.A. Kadir et al., Sci. World J. 2014, 301879 (2014)CrossRefGoogle Scholar
  19. 19.
    D.M. Rivera-Pastrana, E.M. Yahia, G.A. González-Aguilar, J. Sci. Food Agric. 90, 2358–2365 (2010)CrossRefGoogle Scholar
  20. 20.
    J.D. Banchroft, A. Stevens, D.R. Turner, in Theory and Practice of Histopathological Techniques. (Churchill Livingstone, New York, 1996)Google Scholar
  21. 21.
    S. Pérez-Magariño et al., J. Chromatogr. A 847, 75–81 (1999)CrossRefGoogle Scholar
  22. 22.
    T. Wachs et al., J. Chromatogr. Sci. 29, 357–366 (1991)CrossRefGoogle Scholar
  23. 23.
    G. Mandalari et al., J. Food Compos. Anal. 23, 166–174 (2010)CrossRefGoogle Scholar
  24. 24.
    F. Cuyckens, M. Claeys, J. Mass Spectrom. 39, 1–15 (2004)CrossRefGoogle Scholar
  25. 25.
    L.-Z. Lin, J.M. Harnly, J. Agric. Food Chem. 55, 1084–1096 (2007)CrossRefGoogle Scholar
  26. 26.
    U. Justesen, J. Chromatogr. A 902, 369–379 (2000)CrossRefGoogle Scholar
  27. 27.
    N.M. Sokkar et al., Quím Nova 37, 667–671 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Sun et al., Molecules 12, 679–693 (2007)CrossRefGoogle Scholar
  29. 29.
    K. Ablajan et al., J. Mass Spectrom. 41, 352–360 (2006)CrossRefGoogle Scholar
  30. 30.
    L. Barros et al., Plant Foods Hum. Nutr. 67, 229–234 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Blazics, Chromatographia 68, S107-S111 (2010)Google Scholar
  32. 32.
    L. Zhang, L. Xu, S.S. Xiao, Q.F. Liao, Q. Li, J. Liang, X.H. Chen, K.S. Bi, J. Pharm. Biomed. Anal. 44, 1019–1028 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Ye et al., J. Pharmacol. Anal. 2, 35–42 (2012)CrossRefGoogle Scholar
  34. 34.
    F. Sánchez-Rabaneda et al., J. Mass Spectrom. 38, 35–42 (2003)CrossRefGoogle Scholar
  35. 35.
    G. Gattuso et al., Molecules 12, 1641–1673 (2007)CrossRefGoogle Scholar
  36. 36.
    M.B. Hossain et al., J. Agric. Food Chem. 58, 10576–10581 (2010)CrossRefGoogle Scholar
  37. 37.
    N. Fang, S. Yu, R.L. Prior, J. Agric. Food Chem. 50, 3579–3585 (2002)CrossRefGoogle Scholar
  38. 38.
    M.N. Clifford, K.L. Johnston, S. Knight, N. Kuhnert, J. Agric. Food Chem. 51, 2900–2911 (2003)CrossRefGoogle Scholar
  39. 39.
    M. Monagas, I. Garrido, R. Lebrón-Aguilar, B. Bartolome, C. Gómez-Cordovés, J. Agric. Food Chem. 55, 8498–8507 (2007)CrossRefGoogle Scholar
  40. 40.
    T.L. Miron, M. Plaza, G. Bahrim, E. Ibanez, M. Herrero, J. Chromatogr. A. 1218, 4918–4927 (2011)CrossRefGoogle Scholar
  41. 41.
    R. Jaiswal et al., Phytochemistry 106, 141–155 (2014)CrossRefGoogle Scholar
  42. 42.
    B. Blazics, Á. Alberti, L. Kursinszki, Á. Kéry, S. Béni, L. Tölgyesi, J. Chromatogr. Sci. 49, 203–208 (2011)CrossRefGoogle Scholar
  43. 43.
    X. Li, I.S. Benjamin, B. Alexander, J. Hepatol. 36, 488–493 (2002)CrossRefGoogle Scholar
  44. 44.
    H. Okuyama et al., J. Hepatol. 42, 117–123 (2005)CrossRefGoogle Scholar
  45. 45.
    G. Ledda-Columbano et al., Am. J. Pathol. 139, 1099 (1991)Google Scholar
  46. 46.
    H. Hajovsky et al., Chem. Res. Toxicol 25, 1955–1963 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Helmi Moqbel
    • 1
  • Seham Salah El Dine El Hawary
    • 1
  • Nadia Mohammed Sokkar
    • 1
    • 2
  • El Motaz Bellah El-Naggar
    • 3
  • Noha El Boghdady
    • 4
  • Ali Mahmoud El Halawany
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
  2. 2.Department of Natural Products, Faculty of PharmacyKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Pharmacognosy, Faculty of PharmacyDamanhour UniversityDamanhourEgypt
  4. 4.Department of Biochemistry, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations