Skip to main content
Log in

Measurement of engineered nanoparticles in consumer products by surface-enhanced Raman spectroscopy and neutron activation analysis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

There has been an increasing number of consumer and food products sold on the market that contain various engineered nanomaterials (ENMs) such as silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). These nanomaterials possess novel physical and chemical properties that can be used for wide applications in agriculture and food safety. However, current analytical methods to detect and measure ENMs are time-consuming, labor-intensive, and expensive. The objective of this study was to develop a novel, simple, rapid, and accurate method to detect AgNPs and AuNPs in consumer products using surface-enhanced Raman spectroscopy (SERS). SERS measurement was conducted to detect AgNPs and AuNPs using an effective Raman indicator, 4-aminothiophenol (pATP). The pATP can strongly bind onto nanoparticles, generating greatly enhanced Raman signals that can be used for measurement. The pATP was combined with Ag or Au stock solution, AgNO3, citrate-coated AgNPs, citrate-coated AuNPs, AuCl, AgNPs, AuNPs, and five commercial products to study the differences in their SERS spectral data. The observed spectra of AgNPs and AuNPs have similar peaks at ~ 390, ~ 1087, and ~ 1590 cm−1 that can be attributed to the C–S stretching vibration, C–C stretching vibration, and C–H stretching vibration, respectively. Neutron activation analysis (NAA) and electron microscopy was used to characterize and quantify AgNPs and AuNPs in the consumer products. The results demonstrate that SERS method in combination with NAA can be an effective method for detection of ENMs, and it can easily distinguish AgNPs and AuNPs from other non-nanoparticle species in the complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Yada, N. Buck, R. Canady, C. DeMerils, T. Duncan et al., Rev. Food Sci. Food Saf. 13, 730–744 (2014)

    Article  CAS  Google Scholar 

  2. G. Singh, C. Stephan, P. Westerhoff, D. Carlander, T.V. Duncan, Compr. Rev. Food Sci. Food Saf. 13, 693–704 (2014)

    Article  CAS  Google Scholar 

  3. M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. McGinnis, M.F. Hochella Jr., D. Rejeski, M.S. Hull, Beilstein J. Nanotechnol 6, 1769–1780 (2015)

    Article  CAS  Google Scholar 

  4. C.S. Seney, B.M. Gutzman, R.H. Goddard, J. Phys. Chem. C 113, 74–80 (2008)

    Article  Google Scholar 

  5. K.G. Stamplecoskie, J.C. Scaiano, V.S. Tiwari, H. Anis, J. Phys. Chem. C 115, 1403–1409 (2011)

    Article  CAS  Google Scholar 

  6. T.V. Duncan, K. Pillai, ACS Appl. Mater. Interfaces 7, 2–19 (2015)

    Article  CAS  Google Scholar 

  7. B. Domènech, M. Muñoz, D.N. Muraviev, J. Macanás, in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, ed. By A. Mèndez-Vias (Formatex Research Center, Badajoz, 2013), pp. 630–640

    Google Scholar 

  8. V.V. Mody, R. Siwale, A. Singh, H.R. Mody, J. Pharm. Bioallied Sci. 4, 282–289 (2010)

    Article  Google Scholar 

  9. B.S. Inbaraj, B.H. Chen, J. Food Drug Anal. 24, 15–28 (2016)

    Article  Google Scholar 

  10. K. Tiede, S.F. Hanssen, P. Westerhoff, G.J. Fern, S.M. Hankin, R.J. Aitken et al., Nanotoxicology 10, 102–110 (2016)

    CAS  Google Scholar 

  11. N. Li, S. Georas, N. Alexis, P. Fritz, T. Xia, M.A. Williams et al., J. Allergy Clin. Immunol. 138, 386–396 (2016)

    Article  CAS  Google Scholar 

  12. R. Podila, J.M. Brown., J. Biochem. Mol. Toxicol. 27, 50–55 (2013)

    Article  CAS  Google Scholar 

  13. G.O. Noonan, A.J. Whelton, D. Carlander, T.V. Duncan, Compr. Rev. Food Sci. Food Saf. 13, 679–692 (2014)

    Article  CAS  Google Scholar 

  14. K.M.A. El-Nour, A. Eftaiha, A. Al-Warthan, R.A.A. Ammar, Arab. J. Chem 3, 135–140 (2010)

    Article  Google Scholar 

  15. X. Song, H. Li, Z. Hu, M. Azlin, M. Lin. J. Food Measure 8, 207–212 (2014)

    Article  Google Scholar 

  16. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974)

    Article  CAS  Google Scholar 

  17. A. Campion, P. Kambhampati, Chem. Soc. Rev 27, 241–250 (1998)

    Article  CAS  Google Scholar 

  18. S. Hong, X. Li, J. Nanomater. 790323, 1–9 (2013)

    Google Scholar 

  19. J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen et al., Nanoscale 2, 2733–2738 (2010)

    Article  CAS  Google Scholar 

  20. N.D. Israelsen, C. Hanson, E. Vargis, Sci. World J. 124582, 1–12 (2015)

    Article  Google Scholar 

  21. M.D. Glascock, An overview of neutron activation analysis (MU Archaeometry Laboratory), http://archaeometry.missouri.edu/naa_overview.html. Accessed 2 May 2016

  22. R. Acharya, A.D. Shinde, S. Jeyakumar, M.K. Das, A.V.R. Reddy, J. Radioanal. Nucl. Chem 298, 449–453 (2013)

    Article  CAS  Google Scholar 

  23. D.-Y. Wu, L.-B. Zhao, X.-M. Liu, R. Huang, Y.-F. Huang, B. Ren, Z.-Q. Tian, Chem. Commun. 47, 2520–2522 (2011)

    Article  CAS  Google Scholar 

  24. Y. Zhou, J. Zhi, J. Zhao, M. Xu, Anal. Chem. 26, 957–961 (2010)

    CAS  Google Scholar 

  25. H. Guo, Z. Zhang, B. Xing, A. Mukherjee, C. Musante, J.C. White, L. He, Environ. Sci. Technol. 49, 4317–4324 (2015)

    Article  CAS  Google Scholar 

  26. K.A. Willets, R.P. van Duyne, Annu. Rev. Phys. Chem 58, 267–297 (2007)

    Article  CAS  Google Scholar 

  27. S. Agnihotri, S. Mukherji, S. Mukherji, RSC Adv. 4, 3974–3983 (2014)

    Article  CAS  Google Scholar 

  28. Y.H. Ngo, D. Li, G.P. Simon, G. Garnier, Langmuir 28, 8782–8790 (2012)

    Article  CAS  Google Scholar 

  29. R.L. Garrell, Anal. Chem. 61, 401A–411A (1989)

    Article  Google Scholar 

  30. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957–2976 (1999)

    Article  CAS  Google Scholar 

  31. T.M. Tolaymat, A.M. El Badawy, A. Genaidy, K.G. Scheckel, T.P. Luxton, M. Suidan, Sci. Total Environ. 408, 999–1006 (2010)

    Article  CAS  Google Scholar 

  32. E.J. Petersen, T.B. Henry, J. Zhao, R.I. MacCuspie, T.L. Kirschling et al., Environ. Sci. Technol. 48, 4226–4246 (2014)

    Article  CAS  Google Scholar 

  33. nanoComposix, Gold Nanoparticles: Physical Properties, http://nanocomposix.com/pages/gold-nanoparticles-physical-properties. Accessed 2 May 2016

  34. Y. Zhang, X. Li, B. Xue, X. Kong, X. Liu, L. Tu, Y. Chang, Sci. Rep 5, 14934 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by USDA NIFA Multi-state Project (NC1194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengshi Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liou, P., Nguyen, T.H.D. & Lin, M. Measurement of engineered nanoparticles in consumer products by surface-enhanced Raman spectroscopy and neutron activation analysis. Food Measure 12, 736–746 (2018). https://doi.org/10.1007/s11694-017-9687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9687-y

Keywords

Navigation