Bio-enrichment of functional properties of peanut oil cakes by solid state fermentation using Aspergillus oryzae

  • Pardeep K. Sadh
  • Prince Chawla
  • Latika Bhandari
  • Joginder S. Duhan
Original Paper

Abstract

Solid state fermentation (SSF) is a technological tool to improve the functional and nutritional properties of bio resource products. The present investigation was carried out to evaluate the significance of SSF by means of Aspergillus oryzae on enzyme activity, functional properties and mineral contents of peanut oil cakes (POC). Effect of SSF on the functional properties of POC sample was evaluated and significant improvement was observed in all the tested functional properties except bulk density where significant (p < 0.0.5) decrease was observed. Significant improvement in enzyme activity was also contributed by SSF during different enzyme assays. Microstructural analysis of the fermented POC samples showed a progressive development in the smoothness of granule surface with increasing time of fermentation. Fourier transform infrared spectroscopic analysis was done to evaluate the composition of POC samples at the macromolecular level. The results of FTIR showed a significant increase in protein content with advancing fermentation.

Keywords

SSF Functional properties Enzymes FTIR Oil cakes Microstructure 

Abbreviations

SSF

Solid state fermentation

OBC

Oil binding capacity

WHC

Water holding capacity

EA

Emulsion activity

ES

Emulsion stability

FC

Foam capacity

FS

Foam stability

AAS

Atomic absorption spectrophotometer

FTIR

Fourier transform infrared spectroscopy

SEM

Scanning electron microscopy

POC

Peanut oil cakes

Notes

Acknowledgements

The support by Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India is gratefully acknowledged.

References

  1. 1.
    K. Nyemb, C. Guerin-Dubiard, S. Pezennec, J. Jardin, V. Briard-Bion, C. Cauty, S.M. Rutherfurd, D. Dupont, F. Nau, The structural properties of egg white gels impact the extent of in vitro protein digestion and the nature of peptides generated. Food Hydrocolloid 54, 315–327 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Gornas, M. Rudzinska, Seeds recovered from industry by-products of nine fruit species witha high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind. Crops Prod. 83, 329–338 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Herrero, A.D.P. Sánchez-Camargo, A. Cifuentes, E. Ibanez, Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Anal. Chem. 71, 26–38 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Karboune, N. Khodaei, Structures, isolation and health-promoting properties of pectic polysaccharides from cell wall-rich food by-products: a source of functional ingredients. Curr. Opin. Food Sci. 8, 50–55 (2016)CrossRefGoogle Scholar
  5. 5.
    A.K. Sarker, D. Saha, H. Begum, A. Zaman, M.M. Rahman, Comparison of cake compositions, pepsin digestibility and amino acids concentration of proteins isolated from black mustard and yellow mustard cakes. AMB Express 5, 22 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Zhao, T. Zhou, Y. Zhang, Y. Ni, Q. Li, Optimization of arachin extraction from defatted peanut (Arachis hypogaea) cakes and effects of ultra-high pressure (UHP) treatment on physiochemical properties of arachin. Food Bioprod. Process. 95, 38–46 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Pickardt, P. Eisner, R.D. Kammerer, R. Carle, Pilot plant preparation of light coloured protein isolates from de-oiled sunflower (Helianthus annuus L.) press cake by mild-acidic protein extraction and polyphenol adsorption. Food Hydrocolloid 44, 208–219 (2015)CrossRefGoogle Scholar
  8. 8.
    B.S. Zhang, In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem. 201, 1–8 (2016)CrossRefGoogle Scholar
  9. 9.
    M.P. Martin, V. Nepote, N.R. Grosso, Chemical, sensory, and microbiological stability of stored raw peanuts packaged in polypropylene ventilated bags and high barrier plastic bags. LWT-Food Sci. Technol. 68, 174–182 (2016)CrossRefGoogle Scholar
  10. 10.
    S.S. Arya, A.R. Salve, S. Chauhan, Peanuts as functional food: a review. J. Food Sci. Technol. 53(1), 31–41 (2016)CrossRefGoogle Scholar
  11. 11.
    C.H. Chi, S.J. Cho, Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Sci. Technol. 68, 619–625 (2016)CrossRefGoogle Scholar
  12. 12.
    Yu.. Xiao, G. Xing, X. Rui, W. Li, X. Chen, M. Jiang, M. Dong, Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. Food Sci. Technol. 63, 1317–1324 (2015)Google Scholar
  13. 13.
    J.S. Duhan, P. Saharan, S.K. Gahlawat, Surekha, Antioxidant potential of various extracts of stem of Thuja orientalis: in vitro study. Int. J. Appl. Biol. Pharm. 3(4), 264–271 (2012)Google Scholar
  14. 14.
    J.S. Duhan, A. Rana, P.K. Sadh, P. Saharan, Surekha, Antimicrobial and free radical scavenging activity of selective medicinal plants combination. World J. Pharm. Sci. 4(3), 1202–1216 (2015)Google Scholar
  15. 15.
    A. Rana, P. Saharan, P.K. Sadh, Surekha, J.S. Duhan, Free radical scavenging and antimicrobial potential of mixture of selective medicinal plants. Asian J. Pharm. Clin. Res. 7(4), 27–32 (2014)Google Scholar
  16. 16.
    G. Guan, Z. Zhang, H. Ding, M. Li, D. Shi, M. Zhu, L. Xia, Enhanced degradation of lignin in corn stalk by combined method of Aspergillus oryzae solid state fermentation and H2O2 treatment. Biomass Bioenergy 81, 224–233 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Chancharoonpong, P.C. Hsieh, C.S. Sheu, Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. APCBEE Procedia 2, 57–61 (2012)CrossRefGoogle Scholar
  18. 18.
    G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–429 (1959)CrossRefGoogle Scholar
  19. 19.
    M. Kaur, N. Singh, Relationships between various functional, thermal and pasting properties of flours from different Indian black gram (Phaseolus mungo L.) cultivars. J. Sci. Food Agric. 87, 974–984 (2007)CrossRefGoogle Scholar
  20. 20.
    R.O. Adeleke, J.O. Odedeji, Functional properties of wheat and sweet potato flour blends. Pak. J. Nutr. 9(6), 535–538 (2010)CrossRefGoogle Scholar
  21. 21.
    V.Q. Neto, N. Narain, J.B. Silva, P.S. Bora, Functional properties of raw and heat processed cashew nut (Anarcarduim occidentale, L.) kernel protein isolate. Nahrung Food 45, 258–262 (2001)CrossRefGoogle Scholar
  22. 22.
    J.N. DeWit, E. Hontelez-Backx, M. Adamse, Evaluation of functional properties of whey protein concentrates and whey protein isolates 3 functional properties in aqueous solution. Neth. Milk Dairy J. 42, 155–172 (1988)Google Scholar
  23. 23.
    AOAC, Official Methods of Analysis. The Association of Official Analytical Chemists, 18th edn. (North Fredrick Avenue Gaithersburg, Maryland, 2005), p. 481Google Scholar
  24. 24.
    G.W. Snedecor, W.G. Cochran, Statistical Methods, 8th edn. 1989 (Affiliated East-West Press, Iowa State University Press, Ames, 1994)Google Scholar
  25. 25.
    A. Pandey, P. Selvakumar, C.R. Soccol, P. Nigam, Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77, 149–162 (1999)Google Scholar
  26. 26.
    A. Kumar, J.S. Duhan, Production and characterization of amylase enzyme isolated from Aspergillus niger MTCC-104 employing solid state fermentation. Int. J. Pharm. Biol. Sci. 2, B250–B258 (2011)Google Scholar
  27. 27.
    A. Kumar, J.S. Duhan, S.K. Tanwar, Screening of Aspergillus spp. for extra cellular α-amylase activity, in Impact of global climate change on earth ecosystem, ed. by D.R. Khanna, A.K. Chopra, G. Matta, V. Singh, R. Bhutiani (Biotech Books, New Delhi, 2013), pp. 205–214Google Scholar
  28. 28.
    K.M. Cho, S.Y. Hong, R.K. Math, J.H. Lee, D.M. Kambiranda, J.M. Kim, Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 114, 413–419 (2009)CrossRefGoogle Scholar
  29. 29.
    M.L. Polizeli, C.S. Rizzatti, R. Monti, H.F. Terenzi, J. Jorge, D.S. Amorim, Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005)CrossRefGoogle Scholar
  30. 30.
    T. Bhanja, A. Kumari, R. Banerjee, Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour. Technol. 100, 2861–2866 (2009)CrossRefGoogle Scholar
  31. 31.
    J.S. Duhan, K. Mehta, P.K. Sadh, P. Saharan, Surekha, Bio-enrichment of phenolics and free radicals scavenging activity of wheat (WH-711) fractions by solid state fermentation with Aspergillus oryzae. Afr. J. Biochem. Res. 10(2), 12–19 (2016)CrossRefGoogle Scholar
  32. 32.
    P.K. Sadh, P. Saharan, J.S. Duhan, Bio-augmentation of antioxidants and phenolic content of Lablab purpureus by solid state fermentation with GRAS filamentous fungi. Res. Eff. Technol. 3, 285–292 (2016). doi: 10.1016/j.reffit.2016.12.007 Google Scholar
  33. 33.
    P.K. Sadh, P. Saharan, S. Duhan, J.S. Duhan, Bio-enrichment of phenolics and antioxidant activity of combination of Oryza sativa and Lablab purpureus fermented with GRAS filamentous fungi. Res. Eff. Technol. 3, 347–352 (2017). doi: 10.1016/j.reffit.2017.02.008 Google Scholar
  34. 34.
    L. Bhandari, N.S. Sodhi, P. Chawla, Effect of acidified methanol modification on physico chemical properties of Black-eyed pea (Vigna unguiculata) starch. Int. J. Food Prop. (2016). doi: 10.1080/10942912.2016.1171236 Google Scholar
  35. 35.
    I. Amadou, M.E. Gounga, Y.H. Shi, G.W. Le, Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. Food Bioprod. Process. 92(1), 38–45 (2013)CrossRefGoogle Scholar
  36. 36.
    A.E.O. Elkhalifa, B. Schiffler, R. Bernhardt, Effect of fermentation on the functional properties of sorghum flour. Food Chem. 92, 1–5 (2005)CrossRefGoogle Scholar
  37. 37.
    O.O. Oloyede, S. James, B.O. Ocheme, C.E. Chinma, V.E. Akpa, Effects of fermentation time on the functional and pasting properties of defatted Moringa oleifera seed flour. Food Sci. Nutr. 4(1), 89–95 (2016)CrossRefGoogle Scholar
  38. 38.
    V.N. Enujiugha, A.A. Badejo, S.O. Iyiola, M.O. Oluwamukomi, Effect of germination on the functional properties of African oil bean (Penthaclethra macrophylla Benth) seed flour. J. Food Agric. Environ. 1, 72–75 (2003)Google Scholar
  39. 39.
    W. Prinyawiwatkul, K.H. McWatters, L.R. Beuchat, R.D. Phillips, Functional characteristics of cowpea (Vigna unguiculata) flour and starch as affected by soaking, boiling, and fungal fermentation before milling. Food Chem. 58, 361–372 (1997)CrossRefGoogle Scholar
  40. 40.
    J.Y. Lim, J.J. Kim, D.S. Lee, G.H. Kim, J.Y. Shim, I. Lee, Physicochemical characteristics and production of whole soymilk from Monascus fermented soybeans. Food Chem. 120(1), 255–260 (2010)CrossRefGoogle Scholar
  41. 41.
    Y.F. Cheng, R. Bhat, Functional, physicochemical and sensory properties of novel cookies produced by utilizing underutilized jering (Pithecellobium jiringa Jack.) legume flour. Food Biosci. 14, 54–61 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Chawla, L. Bhandari, P.K. Sadh, R. Kaushik, Impact of solid state fermentation (Aspergillus oryzae) on functional properties and mineral bioavailability of black eyed pea (Vigna unguiculata) seed flour. Cereal Chem. 94(3), 437–442 (2016). doi: 10.1094/CCHEM-05-16-0128-R CrossRefGoogle Scholar
  43. 43.
    C. Shi, J. He, J. Yu, B. Yu, X. Mao, P. Zheng, Z. Huang, D. Chen, Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal. PLoS ONE 11(4), e0153230 (2016)CrossRefGoogle Scholar
  44. 44.
    L.W. Yoon, G.C. Ngoh, A.S. Chua, Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse. Enzym. Microb. Technol. 55, 250–256 (2013)CrossRefGoogle Scholar
  45. 45.
    C. Shi, J. He, J. Yu, B. Yu, X. Mao, P. Zheng, Z. Huang, D. Chen, Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotechnol. 6(1), 13 (2015)CrossRefGoogle Scholar
  46. 46.
    C. Wang, L. Jiang, D. Wei, Y. Li, X. Sui, Z. Wang, D. Li, Effect of secondary structure determined by FTIR spectra on surface hydrophobicity of soybean protein isolate. Procedia Eng. 15, 4819–4827 (2011)CrossRefGoogle Scholar
  47. 47.
    V.K. Joshi, D.K. Sandhu, Effect of solid state fermentation and yeast species on composition of apple pomace: application of PCA. Int. J. Food Ferment. Technol. 2(1), 87–91 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Pardeep K. Sadh
    • 1
  • Prince Chawla
    • 2
  • Latika Bhandari
    • 3
  • Joginder S. Duhan
    • 1
  1. 1.Department of BiotechnologyChaudahry Devi Lal UniversitySirsaIndia
  2. 2.School of Bioengineering and Food TechnologyShoolini UniversitySolanIndia
  3. 3.Dairy Technology DivisionNational Dairy Research InstituteKarnalIndia

Personalised recommendations