Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices

  • Kong S. Ah-Hen
  • Karen Mathias-Rettig
  • Luis Salvador Gómez-Pérez
  • Gabriela Riquelme-Asenjo
  • Roberto Lemus-Mondaca
  • Ociel Muñoz-Fariña
Original Paper
  • 49 Downloads

Abstract

The aim of the study was to characterize the bioactivity and storability of a steam juicer extract from murta (Ugni molinae T.) berries, comparing with the bioactive quality of the fresh fruit. An extraction assay was performed at three different processing times and quality of the extract was assessed by determining bioactives content, antioxidant activity after processing and during storage at different temperatures (5, 20 and 35 °C). Total polyphenols, total anthocyanins and antioxidant activity in fresh fruits and juice extracts were evaluated as bioaccessible fractions during an in vitro gastric-intestinal digestion process. Weibull distribution was applied to model the storage behavior of the extracts, and fitted well to experimental data on degradation kinetics of bioactive phenolics and antioxidant activity. The best processing times for highest extraction of bioactive phenolics were found to be 28 ± 1 min for frozen-thawed and 34 ± 1 min for fresh fruits. The juice extract can retain around 80% of the polyphenols and anthocyanins after 21 days of storage at 5 °C. The bioaccessibility index of polyphenols in fresh murta berries or in juice achieved a relatively high value of 70% at the end of the small intestine digestive step. However, the bioactives in the bioaccessible fractions of the fruits and juices had significantly different behavior during the gastric-intestinal digestion steps. The juice released the bioaccessible bioactives in the earlier gastric stage, while the fresh fruit unfolded a higher antioxidant activity with increased release of bioactives in the small intestine.

Keywords

Murta berries Juice extract Bioaccessibility Bioactives Antioxidant activity Extraction process modeling 

Notes

Acknowledgements

The authors gratefully acknowledge financial support of CONICYT-Chile through FONDECYT Project N° 1150451 to conduct this research work.

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest.

References

  1. 1.
    B.N. Ames, M.K. Shigenaga, T.M. Hagen, Proc. Nat. Acad. Sci. 90, 7915–7922 (1993)CrossRefGoogle Scholar
  2. 2.
    J. Boyer, R. Liu, Nutr. J. (2004). doi: 10.1186/1475-2891-3-5 Google Scholar
  3. 3.
    V. López, S. Akerreta, E. Casanova, J.M. García-Mina, R.Y. Cavero, M.I. Calvo, Plant Foods Hum. Nutr. 62, 151–155 (2007)CrossRefGoogle Scholar
  4. 4.
    N. Guthrie, E.M.N. Kurowska, Handbook of Nutraceuticals and Functional Foods (CRC Press, Boca Raton, 2001), pp. 113–126Google Scholar
  5. 5.
    H. Wang, W. Fan, H. Li, J. Yang, J. Huang, P. Zhang, PLoS ONE (2013). doi: 10.1371/journal.pone.0078484 Google Scholar
  6. 6.
    R. du Toit, Y. Volsteedt, Z. Apostolides, Toxicology (2001). doi: 10.1016/S0300-483X(01)00446-2 Google Scholar
  7. 7.
    C. Vijaya, D.,M. Raghunath, Food Res. Int. (2010). doi: 10.1016/j.foodres.2009.10.006 Google Scholar
  8. 8.
    A. Zulueta, M.J. Esteve, A. Frígola, Food Chem. (2009). doi: 10.1016/j.foodchem.2008.09.033 Google Scholar
  9. 9.
    S. Devalaraja, S. Jain, H. Yadav, Food Res. Int. (2011). doi: 10.1016/j.foodres.2011.04.008 Google Scholar
  10. 10.
    H. Speisky, A. Peña, M. Gómez, C. Fredes, M. Hurtado, M. Gotteland, O. Brunser, Acta Hortic. (2008). doi: 10.17660/ActaHortic.2008.777.74 Google Scholar
  11. 11.
    A. Ruiz, I. Gutierrez, C. Mardones, C. Vergara, E. Herlitz, M. Vega, C. Dorau, P. Winterhalter, D. Von Baer, J. Agric. Food Chem. (2010). doi: 10.1021/jf100173x Google Scholar
  12. 12.
    M. Schreckinger, J. Lotton, M. Lila, E. Gonzalez de Mejia, J. Med. Food (2010). doi: 10.1021/jf100975m Google Scholar
  13. 13.
    E. Scheuermann, I. Seguel, A. Montenegro, R. Bustos, E. Hormazábal, A. Quiroz, J. Sci. Food Agric. (2008). doi: 10.1002/jsfa.3111 Google Scholar
  14. 14.
    J.M. Carbonell-Capella, M. Buniowska, F.J. Barba, M.J. Esteve, A. Frígola, Compr. Rev. Food Sci. Food Saf. (2014). doi: 10.1111/1541-4337.12049 Google Scholar
  15. 15.
    E. Fernández-García, I. Carvajal-Lerida, A. Pérez-GÁLVEZ, Nutr. Res. (2009). doi: 10.1016/j.nutres.2009.09.016 Google Scholar
  16. 16.
    R.P. Heaney, J. Nutr. 131, 1344–1348 (2001)Google Scholar
  17. 17.
    J.K. Aschoff, C.L. Rolke, N. Breusing, A. Bosy-Westphal, J. Högel, R. Carle, R.M. Schweiggert, Mol. Nutr. Food Res. (2015). doi: 10.1002/mnfr.201500327 Google Scholar
  18. 18.
    C.M. Stinco, R. Fernández-Vázquez, M.L. Escudero-Gilete, F.J. Heredia, A.J. Meléndez-Martínez, I.M. Vicario, J Agric. Food Chem. (2012). doi: 10.1021/jf2043949 Google Scholar
  19. 19.
    M. Buniowska, J.M. Carbonell-Capella, A. Frigola, M.J. EstEVE, Food Chem. (2017). doi: 10.1016/j.foodchem.2016.10.093 Google Scholar
  20. 20.
    D. Tagliazucchi, E. Verzelloni, D. Bertolini, A. Conte, Food Chem. (2010). doi: 10.1111/j.1745-4514.2011.00569.x Google Scholar
  21. 21.
    E. Hackelsberger, Steam Juice Extractor. U.S. Patent No. US4640186 (A) – 1987-02-03 (1987)Google Scholar
  22. 22.
    AOAC International, Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edn. (AOAC International, Virginia, 1996)Google Scholar
  23. 23.
    A.M. Chuah, Y.-C. Lee, T. Yamaguchi, H. Takamura, L.-J. Yin, T. Matoba, Food Chem. (2008). doi: 10.1016/j.foodchem.2008.03.022 Google Scholar
  24. 24.
    G. Cheng, P. Breen, J. Am. Soc. Hortic. Sci. 116, 865–869 (1991)Google Scholar
  25. 25.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT Food Sci. Technol. (1995). doi: 10.1016/S0023-6438(95)80008-5 Google Scholar
  26. 26.
    G. Tenore, P. Campiglia, A. Ritieni, E. Novellino, Food Chem. (2013). doi: 10.1016/j.foodchem.2013.06.051 Google Scholar
  27. 27.
    S. Chassagne-Berces, C. Poirier, M.-F. Devaux, F. Fonseca, M. Lahaye, G. Pigorini, C. Girault, M. Marin, F. Guillon, Food Res. Int. (2009). doi: 10.1016/j.foodres.2009.03.001 Google Scholar
  28. 28.
    F. Carvajal, F. Palma, M. Jamilena, D. Garrido, Postharvest Biol. Technol. (2015). doi: 10.1016/j.postharvbio.2015.05.013 Google Scholar
  29. 29.
    C. Wei, J. Huang, X. Wang, G.A. Blackburn, Y. Zhang, S. Wang, L.R. Mansaray, Remote Sens. Environ. (2017). doi: 10.1016/j.rse.2017.03.042 Google Scholar
  30. 30.
    R.G. McGuire, Hortic. Sci. 27, 1254–1544 (1992)Google Scholar
  31. 31.
    K. Rodríguez, K. Ah-Hen, A. Vega-Gálvez, J. López, I. Quispe-Fuentes, R. Lemus-Mondaca, L. Gálvez-Ranilla, Int. J. Food Sci. Technol. (2013). doi: 10.1111/ijfs.12392 Google Scholar
  32. 32.
    S.Y. Leong, I. Oey, Food Chem. (2012). doi: 10.1016/j.foodchem.2012.02.052 Google Scholar
  33. 33.
    N. Balasundram, K. Sundram, S. Samman, Food Chem. (2006). doi: 10.1016/j.foodchem.2005.07.042 Google Scholar
  34. 34.
    C. Vasco, J. Ruales, A. Kamal-Eldin, Food Chem. (2008). doi: 10.1016/j.foodchem.2008.04.054 Google Scholar
  35. 35.
    L. Fu, B.-T. Xu, X.-R. Xu, R.-Y. Gan, Y. Zhang, E.-Q. Xia, H.-B. Li, Food Chem. (2011). doi: 10.1016/j.foodchem.2011.04.079 Google Scholar
  36. 36.
    A. Kirca, B. Cemeroglu, Food Chem. (2003). doi: 10.1016/S0308-8146(02)00500-9 Google Scholar
  37. 37.
    A. Kirca, M. Özkan, B. Cemeroglu, Food Chem. (2007). doi: 10.1016/j.foodchem.2006.01.019 Google Scholar
  38. 38.
    N. Harbourne, J. Jacquier, D. Morgan, J. Lyng, Food Chem. (2008). doi: 10.1016/j.foodchem.2008.03.023 Google Scholar
  39. 39.
    A. Wojdylo, J. Oszmianski, P. Laskowski, J. Agric. Food Chem. (2008). doi: 10.1021/jf800510j Google Scholar
  40. 40.
    J. Parada, J.M. Aguilera, J. Food Sci. (2007). doi: 10.1111/j.1750-3841.2007.00274.x Google Scholar
  41. 41.
    AOAC International, Official methods of analysis of the Association of Official Analytical Chemists, 15th edn. (AOAC International, Virginia, 1990)Google Scholar
  42. 42.
    E. Taboada, P. Fisher, R. Jara, E. Zuñiga, M. Gidekel, J. Cabrera, E. Pereira, A. Gutiérrez-Moraga, R. Villalonga, G. Cabrera, Food Chem. 123, 669–678 (2010). doi: 10.1016/j.foodchem.2010.05.030 CrossRefGoogle Scholar
  43. 43.
    L. He, H. Xu, X. Liu, W. He, F. Yuan, Z. Hou, Y. Gao, Food Res. Int. (2011). doi: 10.1016/j.foodres.2010.05.023 Google Scholar
  44. 44.
    J. Bouayed, L. Hoffmann, T. Bohn, Food Chem. (2011). doi: 10.1016/j.foodchem.2011.02.052 Google Scholar
  45. 45.
    B. Janković, Biopolymers (2013). doi: 10.1002/bip.22271 Google Scholar
  46. 46.
    J.D. Everette, Q.M. Bryant, A.M. Green, Y.A. Abbey, G.W. Wangila, R.B. Walker, J. Agric. Food Chem. (2010). doi: 10.1021/jf1005935 Google Scholar
  47. 47.
    M. Ikawa, T.D. Schaper, C.A. Dollard, J.J. Sasner, J. Agric. Food Chem. (2003). doi: 10.1021/jf021099r Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias AgrariasUniversidad Austral de ChileValdiviaChile
  2. 2.Escuela de Graduados, Facultad de Ciencias AgrariasUniversidad Austral de ChileValdiviaChile
  3. 3.Departamento de Ingeniería en AlimentosUniversidad de La SerenaLa SerenaChile
  4. 4.Departamento de Ciencia de Alimentos y Tecnología QuímicaUniversidad de ChileIndependencia, SantiagoChile

Personalised recommendations