Botanical authentication of honeys based on Raman spectra

Original Paper
  • 51 Downloads

Abstract

The aim of this study was to investigate the possibility of honey botanical authentication using the Raman spectroscopy. For this purpose 76 samples of honeys of different botanical origins (acacia, tilia, sunflower, polyfloral and honeydew) were purchased from local beekeepers from Suceava county, Romania. The honey samples have been characterized based on the melissopalynological analysis and electrical conductivity according to its botanical origin. The samples have been classified into acacia, tilia, sunflower, polyfloral and honeydew. The Raman spectra analysis has been proved to be an excellent tool (simple, rapid and non destructive method) for honey authentication; by the linear discriminant analysis (LDA) applied 83.33% of the honey has been correctly cross validated.

Keywords

Honey Authentication Botanical origin Raman spectra analysis Linear discriminant analysis 

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-0110.

References

  1. 1.
    Council Directive 2001/110/EC, Council directive of 20 December relating to honey 2001/110/EC. JOEC, 10, 47–52 (2002)Google Scholar
  2. 2.
    F. Corvucci, L. Nobili, D. Melucci, F.V. Grillenzoni, The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 169, 297–304 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Gok, M. Severcan, E. Goormaghtigh, I. Kandemir, F. Severcan, Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 170, 234–240 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Oroian, S. Amariei, A. Rosu, G. Gutt, Classification of unifloral honeys using multivariate analysis. J. Essent. Oil Res. 27(6), 533–544 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Cordella, I. Moussa, A.C. Martel, N. Sbirrazzuoli, L. Lizzani-Cuvelier, Recent developments in food characterization and adulteration detection: technique-oriented perspectives. J. Agr. Food Chem. 50(7), 1751–1764 (2002)CrossRefGoogle Scholar
  6. 6.
    National Institute of Statistics Bulletin of 2012. http://www.insse.ro/cms/ro/content/buletine-statistice
  7. 7.
    M. Oroian, S. Amariei, A. Leahu, G. Gutt, Multi-element composition of honey as a suitable tool for its authenticity analysis. Polish J. Food Nutr. Sci. 65(2), 93–100 (2015)Google Scholar
  8. 8.
    K.W. Swallow, N.H. Low, Analysis and quantitation of the carbohydrates in honey using high-performance liquid chromatography. J. Agr. Food Chem. 38(9), 1828–1832 (1990)CrossRefGoogle Scholar
  9. 9.
    I. Escriche, M. Kadar, M. Juan-Borrás, E. Domenech, Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Res. Int. 44(5), 1504–1513 (2011)CrossRefGoogle Scholar
  10. 10.
    I. Escriche, M. Kadar, M. Juan-Borrás, E. Domenech, Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food chem. 142, 135–143 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Oroian, A. Prisacaru, E.C. Hretcanu, S.G. Stroe, A. Leahu, A. Buculei, Heavy metals profile in honey as a potential indicator of botanical and geographical origin. Int. J. Food Prop. 19(8), 1825–1836 (2016)CrossRefGoogle Scholar
  12. 12.
    Z. Jandrić, S.A. Haughey, R.D. Frew, K. McComb, P. Galvin-King, C.T. Elliott, A. Cannavan, Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem. 189, 52–59 (2015)CrossRefGoogle Scholar
  13. 13.
    J.A.F. Pierna, O. Abbas, P. Dardenne, V. Baeten, Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics/Discrimination du miel de Corse par spectroscopie FT-Raman et chimiométrie. Biotechn Agro Soc Evt 15(1), 75 (2011)Google Scholar
  14. 14.
    R. Goodacre, B.S. Radovic, E. Anklam, Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy. Appl Spectrosc 56(4), 521–527 (2002)Google Scholar
  15. 15.
    L. Ciaccheri, A.G. Mignani, A.A. Mencaglia, R. Di Sanzo, S. Carabetta, M.T. Russo, (2015). Nondestructive and rapid authentication of honey using dispersive raman spectroscopy. In AISEM Annual Conference, 2015 XVIII pp. 1–4. IEEEGoogle Scholar
  16. 16.
    E. Schievano, M. Stocchero, E. Morelato, C. Facchin, S. Mammi, An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics 8(4), 679–690 (2012)CrossRefGoogle Scholar
  17. 17.
    B.K. Sharma, Instrumental Methods of Chemical Analysis, Krishna Prakashan Media, MeerutGoogle Scholar
  18. 18.
    M. Oroian, S. Ropciuc, Honey authentication based on physicochemical parameters and phenolic compounds. Comput. Electron. Agr. 138, 148–156 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Oroian, S. Ropciuc, A. Buculei, Romanian honey authentication based on physico-chemical parameters and chemometrics. J. Food Meas. Charac. 11(2), 719–725 (2017)CrossRefGoogle Scholar
  20. 20.
    I.K. Karabagias, A. Badeka, S. Kontakos, S. Karabournioti, M.G. Kontominas, Characterization and classification of Thymus capitatus (L.) honey according to geographical origin based on volatile compounds, physicochemical parameters and chemometrics. Food Res Int 55, 363–372 (2014)CrossRefGoogle Scholar
  21. 21.
    S.W. Prosser, P.D. Hebert, Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem 214, 183–191 (2017)CrossRefGoogle Scholar
  22. 22.
    I.K. Karabagias, G. Casiello, S. Kontakos, A.P. Louppis, F. Longobardi, M.G. Kontominas, Investigating the impact of botanical origin and harvesting period on carbon stable isotope ratio values (13C/12C) and different parameter analysis of Greek unifloral honeys: a chemometric approach for correct botanical discrimination. Int J Food Sci. Technol. 51(11), 2460–2467 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Cenet, Z. Ulukanli, A. Bozdogan, G. Sezer, E. Memis, The authentication of the botanical origin, physicochemical properties, antioxidant and antimicrobial activities of East Mediterranean honey. Bio. Res. Appl. Chem. 6(6), (2016)Google Scholar
  24. 24.
    G. Ma, Y. Zhang, J. Zhang, G. Wang, L. Chen, M. Zhang, … & C. Lu, Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: taking Dongting Biluochun as an example. Food Contr. 59, 714–720 (2016)CrossRefGoogle Scholar
  25. 25.
    M.F. Adak, N. Yumusak, Classification of E-nose aroma data of four fruit types by ABC-based neural network. Sensors 16(3), 304 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Codrich, Applications and limits of Raman spectroscopy in the study of colonic and pulmonary malformations, PhD Thesis, Universita’ degli studi di Trieste (2007)Google Scholar
  27. 27.
    C.A. Owen, I. Notingher, R. Hill, M. Stevens, L.L. Hench, Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. J. Mater Sci 17(11), 1019–1023 (2006)Google Scholar
  28. 28.
  29. 29.
    K. de Sá Oliveira, L. de Souza Callegaro, R. Stephani, M.R. Almeida, L.F.C. de Oliveira, Analysis of spreadable cheese by Raman spectroscopy and chemometric tools. Food Chem. 194, 441–446 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Nawrocka, M. Szymańska-Chargot, A. Miś, R. Kowalski, W.I. Gruszecki, Raman studies of gluten proteins aggregation induced by dietary fibres. Food Chem. 194, 86–94 (2016)CrossRefGoogle Scholar
  31. 31.
    R.M. El-Abassy, B. von der Kammer, A. Materny, UV Raman Spectroscopy for the Characterization of Strongly Fluorescing Beverages. LWT-Food Sci. Technol. 64(1), 56–60 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Korifi, Y. Le Dreau, J. Molinet, J. Artaud, N. Dupuy, Composition and authentication of virgin olive oil from French PDO regions by chemometric treatment of Raman spectra. J. Raman Spectrosc. 42(7), 1540–1547 (2011)CrossRefGoogle Scholar
  33. 33.
    E.F. Olsen, E.O. Rukke, A. Flåtten, T. Isaksson, Quantitative determination of saturated-, monounsaturated-and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci. 76(4), 628–634 (2007)CrossRefGoogle Scholar
  34. 34.
    S. Li, Y. Shan, X. Zhu, X. Zhang, G. Ling, Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Comp. Anal. 28(1), 69–74 (2012)CrossRefGoogle Scholar
  35. 35.
    M.M. Paradkar, J. Irudayaraj, Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy. Food Chem. 76(2), 231–239 (2002)CrossRefGoogle Scholar
  36. 36.
    S.R. Won, D.C. Lee, S.H. Ko, J.W. Kim, H.I. Rhee, Honey major protein characterization and its application to adulteration detection. Food Res. Int. 41(10), 952–956 (2008)CrossRefGoogle Scholar
  37. 37.
    J. Louveaux, A. Maurizio, G. Vorwohl, Commision internationale de botanique apicole de L’U.I.S.B. les methodes of melisso-palynologie. Apidologie 1(2), 211–227 (1970)CrossRefGoogle Scholar
  38. 38.
    S. Bogdanov, K. Ruoff, Persano Oddo, L, Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35, 4–17 (2004)CrossRefGoogle Scholar
  39. 39.
    M. Oroian, Physicochemical and rheological properties of Romanian honeys. Food Biophys. 7(4), 296–307 (2012)CrossRefGoogle Scholar
  40. 40.
    Z.M. Zhang, S. Chen, Y.Z. Liang, Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135(5), 1138–1146 (2010)CrossRefGoogle Scholar
  41. 41.
    R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann Eugenic 7(2), 179–188 (1936)CrossRefGoogle Scholar
  42. 42.
    S. Raschka, 2014, Linear Discriminant Analysis—Bit by Bit - http://sebastianraschka.com/Articles/2014_python_lda.html
  43. 43.
    B. Özbalci, İ.H. Boyaci, A. Topcu, C. Kadılar, U. Tamer, Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem. 136(3), 1444–1452 (2013)CrossRefGoogle Scholar
  44. 44.
    G. Lenco, 2003, Honey quality characteristics used in processes of biotechnological capitalisation, Agir, 3, 56–59Google Scholar
  45. 45.
    A. Guelpa, F. Marini, A. du Plessis, R. Slabbert, M. Manley, Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Contr. 73, 1388–1396 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Food EngineeringStefan cel Mare University of SuceavaSuceavaRomania

Personalised recommendations