Advertisement

Bioactive and sensorial characteristics of the milk based herbal (Rumex crispus L.) tea: multi-criteria decision making approach

  • Mahmut Dogan
  • Duygu Aslan
  • Aylin Ozgur
Article

Abstract

There are different herbal teas in the world, however always new and functional herbal teas are presented to consumer preference. The seeds of Rumex crispus L., also known as ‘kalmuk’ or ‘kalmek’ are infused by boiling water and filtrated and mixed boiled milk. Generally it is consumed in autumn and winter season. The consumption of this herbal tea could offer some beneficial influence as it contains antioxidant substances and phenolics which is associated with the health effects. In the present study, milk was incorporated with the Rumex crispus L. extract at different concentrations and some physicochemical, bioactive and sensory properties of samples were investigated by using multi-criteria decision making techniques. The technique for order preference by similarity to ideal solution (TOPSIS) approach and simple additive weighting (SAW) approach were used for the determination of the optimum sensory and bioactive characteristics of the products. The total phenolic content of the extract of R. crispus L. seeds was found as 31.82 ± 1.6 mg GAE/g. The highest IC50 value was observed in sample containing 70% milk and the lowest was observed in extract of R. crispus L. According to the results of SAW and TOPSIS methods, the samples coded as S5 and S6 were the best samples based on the sensory and bioactive properties.

Keywords

Rumex crispus L. Traditional beverage Sensory analysis Bioactivity TOPSIS SAW 

Notes

Acknowledgements

The authors would like to thank the Unit of Scientific Investigations and Project in Erciyes University for its financial support of this work (Project Number: FBY09-1092).

References

  1. 1.
    D. Desideri et al., Microchem. J. 98(1), 170–175 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Deetae et al., Food Chem. 133(3), 953–959 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Zhao et al., J. Chromatogr. 1313, 2–23 (2013)CrossRefGoogle Scholar
  4. 4.
    S.I. Trevisanato, Y.I. Kim, Nutr. Rev. 58(1), 1–10 (2000)CrossRefGoogle Scholar
  5. 5.
    D.L. McKay, J.B. Blumberg., J. Am. Coll. Nutr. 21(1), 1–13 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Kosińska, W. Andlauer, in Processing and Impact on Antioxidants in Beverages. Antioxidant Capacity of Tea. Effect of Processing and Storage, (Elsevier, Oxford, 2014). pp. 109–120CrossRefGoogle Scholar
  7. 7.
    D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53(6), 1841–1856 (2005)CrossRefGoogle Scholar
  8. 8.
    B. Halliwell, Biochem. Pharmacol. 49(10), 1341–1348 (1995)CrossRefGoogle Scholar
  9. 9.
    C. Kaur, H.C. Kapoor, Food Sci. Technol. 36(7), 703–725 (2001)CrossRefGoogle Scholar
  10. 10.
    D.P. Arcari et al., J. Funct. Foods 3(3), 190–197 (2011). doi:  10.1016/j.jff.2011.04.001 Google Scholar
  11. 11.
    H.-J. Suh et al., J. Photochem. Photobiol. B 102(2), 102–107 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Cullen, Rumex. Flora of Turkey and East Aegean Islands. ed. by Davis P.H., vol. 2 (Edinburgh University Press, Edinburgh, 1972)Google Scholar
  13. 13.
    T. Baytop, Istanbul Üniversitesi Yayınları. (Istanbul University, Istanbul, 1996), p. 444Google Scholar
  14. 14.
    I. Coruh et al., Pharm. Biol. 46(9), 634–638 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Yildirim, A. Mavi, A.A. Kara, J. Agric. Food Chem. 49(8), 4083–4089 (2001)CrossRefGoogle Scholar
  16. 16.
    S. Pohekar, M. Ramachandran, Renew. Sust. Energy Rev. 8(4), 365–381 (2004)CrossRefGoogle Scholar
  17. 17.
    T. Özcan, N. Çelebi, Ş. Esnaf, Expert Syst. Appl. 38(8), 9773–9779 (2011)CrossRefGoogle Scholar
  18. 18.
    T.L. Saaty, The Analytic Hierarchy Process. (McGraw-Hill, New York, 1980)Google Scholar
  19. 19.
    H.P. Ren, W.Z. Liu, Adv. J Food Sci. Technol. 9(2), 87–91 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Dogan et al., Eur. Food Res. Technol. 242(6), 953–966 (2016)CrossRefGoogle Scholar
  21. 21.
    V.E. Gurmeric et al., Food Bioprocess Tech. 6(10), 2844–2859 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Ozturk et al., Food Biosci. 7, 45–55 (2014)CrossRefGoogle Scholar
  23. 23.
    AOAC, Official Methods of Analysis, (Association of Official Analytical Chemists, Arlington, 2005)Google Scholar
  24. 24.
    C. Li, W. Han, M.H. Wang, J. Appl. Biol. Chem. 53(1), 8–12 (2010)CrossRefGoogle Scholar
  25. 25.
    H.M. Habib et al., Food Chem. 141(1), 148–152 (2013)CrossRefGoogle Scholar
  26. 26.
    D.L. Olson, Math. Comput. Modellıng 40(7), 721–727 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Jato-Espino et al., Autom. Constr. 45, 151–162 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Afshari, M. Mojahed, R.M. Yusuff, J. Int. Innov. Man. Technol. 1(5), 511–515 (2010)Google Scholar
  29. 29.
    S. Nehir El, S. Karakaya, Int. J. Food Sci. Nutr. 55(1), 67–74 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Korir et al., Food Chem., 145, 145–153, (2014)CrossRefGoogle Scholar
  31. 31.
    M.J. Arts et al., J. Agric. Food Chem. 50(5), 1184–1187 (2002)CrossRefGoogle Scholar
  32. 32.
    V. Sharma, H.V. Kumar, L.J.M. Rao, Food Res. Int. 41(2), 124–129 (2008)CrossRefGoogle Scholar
  33. 33.
    A.A. Elzaawely, T.D. Xuan, S. Tawata, Biol. Pharm. Bull. 28(12), 2225–2230 (2005)CrossRefGoogle Scholar
  34. 34.
    Y. Zhuang, L. Chen, L. Sun, J. Cao, J. Funct. Foods 4(1), 331–338 (2012)CrossRefGoogle Scholar
  35. 35.
    V. de Freitas, N. Mateus, Curr. Organ. Chem. 16(6), 724–746 (2012)CrossRefGoogle Scholar
  36. 36.
    I. Lesschaeve, A.C. Noble, Am. J. Clin. Nutr. 81(1), 330S–335S (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Food Engineering, Engineering CollegeErciyes UniversityKayseriTurkey
  2. 2.TAGEM Food Analysis Center Co.KayseriTurkey

Personalised recommendations