Advertisement

Evaluation of macroelements and fluorine in leaf and bagged black teas

  • Agnieszka Klink
  • Małgorzata Dambiec
  • Ludmiła Polechońska
  • Andrzej Rudecki
Original Paper
  • 92 Downloads

Abstract

Tea is commonly known to be rich in certain micro- and macroelements. The objective of the study was to evaluate and compare the percentage transfer to the infusion of some essential elements (Ca, K, F, Mg, Na, and P) and determine concentrations of macroelements available in the bagged and leaf black teas of the same brand as well as to assess whether drinking tea could contribute to the daily nutritional mineral requirements of the consumers. The results showed that regardless of the tea type, the most abundant elements in both dry teas and infusions were K and Ca, while F concentrations were the lowest. The PCCA showed that content of elements in dry teas was high while in infusions low. The content of elements was similar in the dry bagged and leaf teas of the same brand, except for F which content was higher in the bagged teas (the U Mann–Whitney test, p < 0.05). Whereas, in case of the infusions, bagged teas contained higher amounts of Ca, F, K, Mg and Na (the U Mann–Whitney test, p < 0.05). The solubility of F, K and Na was high, while in case of Ca, Mg and P moderate. For K, Mg and Na the percentage release from dry tea to the infusion was significantly higher in the bagged than in leaf teas (the U Mann–Whitney test, p < 0.05). The results showed that the tea consumption may substantially contribute to F and Na daily intake (up to 37 and 77.5% of human dietary reference intake, respectively).

Keywords

Tea beverages Nutrients Solubility Human diet 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Yemane, B.S. Chandravanshi, T. Wondimu, Food Chem. 107, 1236–1243 (2008)Google Scholar
  2. 2.
    L. Yao, X. Liu, Y. Jiang, N. Caffin, B. D’Arcy, R. Singanusong, N. Datta, Y. Xu, Food Chem. 94, 115–122 (2006)CrossRefGoogle Scholar
  3. 3.
    C.S. Yang, J.M. Landau, J. Nutr. 130, 2409–2412 (2000)CrossRefGoogle Scholar
  4. 4.
    J. Malik, J. Szakova, O. Drabek, J. Balik, L. Kokoska, Food Chem. 111, 520–525 (2008)CrossRefGoogle Scholar
  5. 5.
    J. Olivier, E.A. Symington, C.Z. Jonker, I.T. Rampedi, T.S. van Eeden, S. Afr. J. Sci. 108, 1–7 (2012)Google Scholar
  6. 6.
    A. Szymczycha-Madeja, M. Welna, P. Pohl, Trends Analyt. Chem. 35, 165–181 (2012)CrossRefGoogle Scholar
  7. 7.
    G. Chen, C. Yang, S. Lee, C. Wu, J.T.C. Tzen, J. Food Drug Anal. 22, 303–309 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Gebretsadik, B. Chandravanshi, B. Chem. Soc. Ethiopia 24, 339–349 (2010)Google Scholar
  9. 9.
    A. Koblar, G. Tavčar, M. Ponikvar-Svet, Food Chem. 130, 286–290 (2012)CrossRefGoogle Scholar
  10. 10.
    M.H. Wong, K.F. Fung, H.P. Carr, Toxicol Lett. 137, 111–120 (2003)CrossRefGoogle Scholar
  11. 11.
    A. Hicks, AU J. Technol. 12, 251–264 (2000)Google Scholar
  12. 12.
    D. Ramdani, A.S. Chaudhry, C.J. Seal, J. Agric. Food Chem. 61, 4961–4967 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Chan, A. Mehra, S. Saikat, P. Lynch, Food Res. Int. 51, 564–570 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Brzezicha-Cirocka, M. Grembecka, P. Szefer, Eur. Food Res. Technol. 242, 383–389 (2016)CrossRefGoogle Scholar
  15. 15.
    S.M.T. Gharibzahedi, S.M. Jafari, Trends Food Sci. Technol. 62, 119–132 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Pękal, M. Biesaga, K. Pyrzynska, Food Sci. Biotechnol 22, 925–930 (2013)CrossRefGoogle Scholar
  17. 17.
    I.A. Hakim, U.M. Weisgerber, R.B. Harris, D. Balentine, C.A.J. van-Mierlo, I. Paetau-Robinson, Nutr. Res. 20, 1715–1724 (2000)CrossRefGoogle Scholar
  18. 18.
    M. Salahinejad, F. Aflaki, Biol. Trace Elem. Res. 134, 109–117 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Dambiec, L. Polechońska, A. Klink, J. Food Comp. Anal. 31, 62–66 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Cao, S.F. Luo, J.W. Liu, Y. Li, Food Chem. 88, 233–236 (2004)CrossRefGoogle Scholar
  21. 21.
    W. Horowitz, AOAC Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists International, Gaithersburg, 2000), pp. 51–56Google Scholar
  22. 22.
    A. Stanisz, Statistics Course with STATISTICA PL Based on Medicine Example, 3rd edn. (StatSoft Polska, Kraków, 2006), pp. 369–381Google Scholar
  23. 23.
    R.R. Sokal, F.J. Rohfl, Biometry: The Principles and Practice of Statistics in Biological Research, 4th edn. (W.H. Freeman, New York, 2012), pp. 220–228Google Scholar
  24. 24.
    P. Legendre, L. Legendre, Numerical Ecology, Developments in Environmental Modeling, 2nd edn. (Elsevier, Amsterdam, 1998), pp. 391–423Google Scholar
  25. 25.
    Inc StatSoft, 2009. STATISTICA (Data Analysis Software System), Version 9.0. http://www.statsoft.com
  26. 26.
    A. Kumar, A.G.C. Nair, A.V.R. Reddy, A.N. Garg, Food Chem. 89, 441–448 (2005)CrossRefGoogle Scholar
  27. 27.
    D. Desideri, M.A. Meli, C. Roselli, L. Feduzi, Microchem. J. 98, 186–189 (2011)CrossRefGoogle Scholar
  28. 28.
    R.N. Gallaher, K. Gallaher, A.J. Marshall, A.C. Marshall, J. Food Comp. Anal. 19, 53–57 (2006)CrossRefGoogle Scholar
  29. 29.
    L. Fishbein, Regul. Toxicol. Pharm. 39, 67–80 (2004)CrossRefGoogle Scholar
  30. 30.
    S.A. Atkinson, R. Costello, J.M. Donohue, Overview of global dietary calcium and magnesium intakes and allowances, Calcium and Magnesium in Drinking-Water: Public Health Significance, ed. by J. Cotruvo, J. Bartram (World Health Organization, Geneva, 2009)Google Scholar
  31. 31.
    H.P. Carr, E. Lombi, H. Küpper, S.P. Mcgrath, M.H. Wong, Agronomie 23, 705–710 (2003)CrossRefGoogle Scholar
  32. 32.
    WHO, Guideline: Sodium Intake for Adults and Children (World Health Organization, Geneva, 2003), pp. 11–14Google Scholar
  33. 33.
    M.T. Soomro, E. Zahir, S. Mohiuddin, A.N. Khan, I.I. Naqvi, Pak. J. Biol. Sci. 11, 285–289 (2008)CrossRefGoogle Scholar
  34. 34.
    WHO, Guideline: Potassium Intake for Adults and Children (World Health Organization, Geneva, 2012), pp. 10–12Google Scholar
  35. 35.
    C.N. Ong, Minerals from Drinking Water: Bioavailability for Various World Populations and Health Implications. Rolling Revision of the WHO Guidelines for Drinking-Water Quality (World Health Organization, Geneva, 2004)Google Scholar
  36. 36.
    K. Kalantar-Zadeh, L. Gutekunst, R. Mehrotra, C.P. Kovesdy, R. Bross, C.S. Shinaberger, N. Noori, R. Hirschberg, D. Benner, A.R. Nissenson, J.D. Kopple, Clin. J. Am. Soc. Nephrol. 5, 519–530 (2010)CrossRefGoogle Scholar
  37. 37.
    National Research Council, Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride (The National Academies Press, Washington, 1997), pp. 146–190Google Scholar
  38. 38.
    WHO; Fluoride in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality (World Health Organization, Geneva, 2004), pp. 29–35Google Scholar
  39. 39.
    W.S. Shu, Z.Q. Zhang, C.Y. Lan, M.H. Wong, Chemosphere 52, 1475–1482 (2003)CrossRefGoogle Scholar
  40. 40.
    E. Malinowska, I. Inkielewicz, W. Czarnowski, P. Szefer, Food Chem. Toxicol 46, 1055–1061 (2008)CrossRefGoogle Scholar
  41. 41.
    Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes. Vitamins (National Academies, Washington, 2011), pp. 2–6Google Scholar
  42. 42.
    A. Mossion, M. Potin-Gautier, S. Delerue, I. Le Hecho, P. Behra, Food Chem. 106, 1467–1475 (2008)CrossRefGoogle Scholar
  43. 43.
    M. Długaszek, Ż. Kurpiewska, J. Mierczyk, Eur. Food Res. Technol. 241, 289–293 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Agnieszka Klink
    • 1
  • Małgorzata Dambiec
    • 1
  • Ludmiła Polechońska
    • 1
  • Andrzej Rudecki
    • 1
  1. 1.Department of Ecology, Biogeochemistry and Environmental ProtectionUniversity of WrocławWrocławPoland

Personalised recommendations