Quercus based coffee-like beverage: effect of roasting process and functional characterization

  • Marta Coelho
  • Sara Silva
  • Luis Miguel Rodríguez-Alcalá
  • Ana Oliveira
  • Eduardo M. Costa
  • André Borges
  • Célia Martins
  • António S. Rodrigues
  • Maria Manuela E. Pintado
Original Paper
  • 67 Downloads

Abstract

Coffee is one of the world’s most widely consumed beverages but intake it is not encouraged in consumers with some health conditions. In this way, with the growing interest in developing healthier substitutes, a coffee-like beverage obtained from Quercus ilex and Quercus suber acorn´s species, was elaborates maintaining the flavor. Although, this beverage is a promising coffee alternative, little is known about effects of roasting process in its composition. To that end the antioxidant capacity and toxicity of the developed coffee were analyzed and phenolic compounds and fatty acids (esterified and free forms) were characterized through HPLC-DAD and GC-FID, respectively. The results showed that Quercus based beverages presented antioxidant capacity related to their phenolic content, mainly to ellagic acid as the primary phenolic compound identified. Due to this composition, the beverage also presented antimutagenic activity. The main fatty acids in the esterified lipids were mainly oleic, linoleic, palmitic, stearic and cis vaccenic. In the free fatty acids fraction (FFA) they were oleic, linoleic and palmitic acids. Heat processing produced a reduction in total fatty acid concentration in TG and FFA fraction of Q. ilex. Nevertheless, for Q. suber alterations were only found for FFA. Coffee production did not form genotoxic or cytotoxic compounds. Overall, these results show the feasibility of Quercus acorn-based foodstuffs and its potential to produce a functional coffee-like beverage.

Keywords

Coffee Heat processing Antimutagenicity Antioxidant Quercus Fatty acids 

Abbreviations

B[a]P

Benzo[a]Pyrene

Notes

Acknowledgements

The author gratefully acknowledge Herdade do Freixo for providing the acorn samples. Funding for this work was provided by Fundação para a Ciência e Tecnologia through the project UID/Multi/50016/2013 and is gratefully acknowledge. Author A. Borges gratefully acknowledges support received via IBESA grant. Additionally, the authors Marta Coelho, Sara Silva and E.M. Costa would like to acknowledge FCT for their PhD grants with the references [Grant Number SFRH/BD/111884/2015] [Grant Number SFRH/ BD/90867/2012], [Grant Number SFRH/BDE/103957/2014], respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    L.C. Boavida, J.P. Silva, J.A. Feijó, Sex. Plant Reprod. 14, 143 (2001)CrossRefGoogle Scholar
  2. 2.
    J.D. Adams, C. Garcia, E.J. Lien, Evid.-Based Complement. Altern. Med. 7, 219 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Belderok, Plant Foods Hum. Nutr. 55, 1 (2000)CrossRefGoogle Scholar
  4. 4.
    E.K. Arendt, E. Zannini, Cereal Grains for the Food and Beverage Industries (Woodhead Publishing Limited, Philadelphia, 2013)Google Scholar
  5. 5.
    A. Panghal, B. Khatkar, U. Singh, Indian Food Ind. 25, 58 (2006)Google Scholar
  6. 6.
    A. Karimi, M. Rafieian-Kopaei, M.-T. Moradi, S. Alidadi, J. Evid.-Based Complement. Altern. Med. 22, 455 (2016)CrossRefGoogle Scholar
  7. 7.
    E.B. Mojzer, M.K. Hrnčič, M. Škerget, Ž. Knez, U. Bren, Molecules 21, 901 (2016)CrossRefGoogle Scholar
  8. 8.
    R.F. González-Laredo, M. Rosales-Castro, N.E. Rocha-Guzmán, J.A. Gallegos-Infante, J.J.K. Rivas-Arreola, M. José, Int. J. Biol. Chem. Phy. Technol. Wood (2012)Google Scholar
  9. 9.
    K. Macáková, V. Kolečkář, L. Cahlíková, J. Chlebek, A. Hošt’álková, K. Kuča, D. Jun, and L. Opletal, Recent Advances in Medicinal Chemistry (2014), pp. 159–208Google Scholar
  10. 10.
    E.A. Hayouni, M. Abedrabba, M. Bouix, M. Hamdi, Food Chem. 105, 1126 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Fernandes, I. Fernandes, L. Cruz, N. Mateus, M. Cabral, V. De Freitas, J. Agric. Food Chem. 57, 11154 (2009)CrossRefGoogle Scholar
  12. 12.
    E. Cantos, J.C. Espín, C. López-Bote, L.D. De la Hoz, J.A. Ordóñez, F.A. Tomás-Barberán, J. Agric. Food Chem. 51, 6248 (2003)CrossRefGoogle Scholar
  13. 13.
    I.D. Silva, J. Gaspar, G. Gomes Da Costa, A.S. Rodrigues, A. Laires, J. Rueff, Chem. Biol. Interactions 124, 29 (2000)CrossRefGoogle Scholar
  14. 14.
    T.A.F. Corrêa, M.P. Monteiro, T.M.N. Mendes, D.M. de; Oliveira, M.M. Rogero, C.I. Benites, M. de Vinagre, B.M. Mioto, D. Tarasoutchi, V.L. Tuda, L.A.M. César, E.A.F. da S.Torres, Plant Foods Hum. Nutr. 67, 277 (2012)CrossRefGoogle Scholar
  15. 15.
    M.S. Gião, M.L. González-Sanjosé, M.D. Rivero-Pérez, C.I. Pereira, M.E. Pintado, F.X. Malcata, J. Sci. Food Agri. 87, 2638 (2007)CrossRefGoogle Scholar
  16. 16.
    V.L. Singleton, J.A. Rossi Jr., American Journal of Enology and Viticulture 16, 144 (1965)Google Scholar
  17. 17.
    C. Cabrera, R. Giménez, M.C. López, J. Agric. Food Chem. 51, 4427 (2003)CrossRefGoogle Scholar
  18. 18.
    L.-Z. Yi, J. He, Y.-Z. Liang, D.-L. Yuan, F.-T. Chau, FEBS Lett. 580(30), 6837–6845 (2006)CrossRefGoogle Scholar
  19. 19.
    N. Vingering, M. Ledoux, Eur. J. Lipid Sci. Tech. 111(7), 669–677 (2009)CrossRefGoogle Scholar
  20. 20.
    D.M. Maron, B.N. Ames, Mutat. Res. 113, 173 (1983)CrossRefGoogle Scholar
  21. 21.
    C. Martins, N.G. Oliveira, M. Pingarilho, G. Gamboa da Costa, V. Martins, M.M. Marques, F.A. Beland, M.I. Churchwell, D.R. Doerge, J. Rueff, J.F. Gaspar, Toxicol. Sci. 95, 383 (2007)CrossRefGoogle Scholar
  22. 22.
    R. Phapale, S. Mirsa-Thakur, Int. J. Pharm. Sci. 2, 68 (2010)Google Scholar
  23. 23.
    S. Rakić, S. Petrović, J. Kukić, M. Jadranin, V. Tešević, D. Povrenović, S. Šiler-Marinković, Food Chem. 104(2), 830–834 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Glabasnia, T. Hofmann, J. Agri. Food Chem. 4109–4118 (2007)Google Scholar
  25. 25.
    M. Charef, M. Yousfi, M. Saidi, P. Stocker, J. Am. Oil Chem. Soc. 85, 921 (2008)CrossRefGoogle Scholar
  26. 26.
    M. León-Camacho, I. Viera-Alcaide, I.M. Vicario, J. Am. Oil Chem. Soc. 81, 447 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Precht, J. Molkentin, M. Vahlendieck, Nahrung / Food 43(1), 25–33 (1999)CrossRefGoogle Scholar
  28. 28.
    C. Ferreri, C. Costantino, L. Perrotta, L. Landi, Q.G. Mulazzani, C. Chatgilialoglu, J. Am. Chem. Soc. 123, 4459 (2001)CrossRefGoogle Scholar
  29. 29.
    C. Geißler, O. Brede, J. Reinhardt, Radiat. Phys. Chem. 67, 105 (2003)CrossRefGoogle Scholar
  30. 30.
    M. Villamiel, M.D. Del Castillo, N. Corzo, Food Biochemistry and Food Processing (Wiley, Ames, 2006), p. 71Google Scholar
  31. 31.
    M.P. Duarte, A. Laires, J. Gaspar, J.S. Oliveira, J. Rueff, Teratog. Carcinog. Mutagen. 20, 241 (2000)CrossRefGoogle Scholar
  32. 32.
    A. Santa-Maria, A. Lopez, M.M. Diaz, A.I. Ortiz, C. Caballo, Teratog. Carcinog. Mutagen. 21, 207 (2001)CrossRefGoogle Scholar
  33. 33.
     R. H. Liu, Am. J. Clin. Nutr. 78, 3 (2003)CrossRefGoogle Scholar
  34. 34.
    V. Dewanto, W. Xianzhong, K.K. Adom, R.H. Liu, J. Agric. Food. Chem. 50, 3010 (2002)CrossRefGoogle Scholar
  35. 35.
    S. Tulipani, B. Mezzetti, F. Capocasa, S. Bompadre, J. Beekwilder, C.H.R. De Vos, E. Capanoglu, A. Bovy, M. Battino, J. Agric. Food Chem. 56, 696 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de BiotecnologiaUniversidade Católica PortuguesaPortoPortugal
  2. 2.Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations