Germination assay of Bacillus amyloliquefaciens as a spore-based biosensing method for detection of cell wall destruction antibiotics

  • Samaneh Shahrokh Esfahani
  • Giti Emtiazi
  • Mohsen Rabbani
Original Paper

Abstract

Dormant bacterial spores can sense their environments and under favorable conditions exchange their cycle from spore state to germinated one through the processes of germination and outgrowth. Here, the capability of spore germination is used to design an antibiotic bio-sensing system. Germination assays were carried out by reduction of optical density, release of Dipicolinic acid and respiration test under different germinats and various concentrations of Penicillin as a germination inhibitor. This study showed that although current germinants are not properly useful for germination of Bacillus amyloliquefaciens in starch media, presence of a small amount of cell wall destruction antibiotics (25 µg/ml) can accelerate germination but prevent outgrowth of germinated spores. So, the germinated spores cannot use the starch and stain blue with iodine reagent. This phenomenon is beneficial for detection of antibiotic residues in food and feed which are severe problem for consumers or by giving rise to the expansion of antibiotic resistances.

Keywords

Antibiotic residues Antibiotic resistance Bio-sensing system Spore germination 

Notes

Acknowledgements

The author gratefully acknowledges financial support of University of Isfahan.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

References

  1. 1.
    P.J. Barlass, C.W. Houston, M.O. Clements, A. Moir, Germination of Bacillus cereus spores in response to l-alanine and to inosine: the roles of gerL and gerQ operons. Microbiology 148, 2089–2095 (2002)CrossRefGoogle Scholar
  2. 2.
    J.M. Crane, M.E. Frodyma, G.C. Bergstrom, Nutrient-induced spore germination of a Bacillus amyloliquefaciens biocontrol agent on wheat spikes. J. Appl. Microbiol. 116, 1572–1583 (2014)CrossRefGoogle Scholar
  3. 3.
    N. Kumar, G. Thakur, H.V. Raghu, N. Singh, P.K. Sharma, V.K. Singh, A. Khan, M. Balhara, R. Avinash Lawaniya, S. Kouser, N. Tehri, R. Gopaul, A. Shivani, Bacterial spore based biosensor for detection of contaminants in milk. J. Food Process. Technol. 4(11), 1–6 (2013)Google Scholar
  4. 4.
    N.A. Mungroo, S. Neethirajan, Biosensors for the detection of antibiotics in poultry industry. Biosensors 4, 472–493 (2014)CrossRefGoogle Scholar
  5. 5.
    D.F. Apata, Antibiotic resistance in poultry. Int. J. Poult. Sci. 8(4), 404–408 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Clauβen, D. Bahmann, S. Schmidt, Detection of antibiotic residues in food—pitfalls and optimization of agar diffusion tests in comparison with commercial test kits. in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, ed. by A. Méndez-Vilas (Formatex Research Center, Badajoz, 2013) pp. 359–366Google Scholar
  7. 7.
    N. Kumar, H.V. Raghu, A. Kumar, L. Haldar, A. Khan, S. Rane, R. Kumar Malik, Spore germination based assay for monitoring antibiotic residues in milk at dairy farm. World J. Microbiol. Biotechnol. 28, 2559–2566 (2012)CrossRefGoogle Scholar
  8. 8.
    W.M. Wachira, A. Shitandi, R. Ngure, Determination of the limit of detection of penicillin G residues in poultry meat using a low cost microbiological method. Int. Food Res. J. 18(3), 1203–1208 (2011)Google Scholar
  9. 9.
    S. Shahrokh Esfahani, G. Emtiazi, R. Shafiei, N. Ghorbani, S.H. Zarkesh Esfahani, Tolerance induction of temperature and starvation with tricalcium phosphate on preservation and sporulation in Bacillus amyloliquefaciens detected by flow cytometry. Curr. Microbiol. (2016). doi: 10.1007/s00284-016-1066-0 Google Scholar
  10. 10.
    L.M. Hornstra, YPD Vries, WMD Vos, T. Abee, Influence of sporulation medium composition on transcription of ger operons and the germination response of spores of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 72(5), 3746–3749 (2006)CrossRefGoogle Scholar
  11. 11.
    W.H. Coleman, D. Chen, Y.Q. Li, A.E. Cowan, P. Setlow, How moist heat kills spores of Bacillus subtilis. J. Bacteriol. 189(23), 8458–8466 (2007)CrossRefGoogle Scholar
  12. 12.
    C. Laflamme, S. Lavigne, J. Ho, C. Duchaine, Assessment of bacterial endospore viability with fluorescent dyes. J. Appl. Microbiol. 96, 684–692 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Shahrokh, G. Emtiazi, Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. Eur. J. Biol. Sci. 1(3), 28–31 (2009)Google Scholar
  14. 14.
    Z. Xiao, R. Storms, A. Tsang, A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem 351(1), 146–148 (2006)CrossRefGoogle Scholar
  15. 15.
    R. Goodacre, B. Shann, R.J. Gilbert, E.M. Timmins, A.C. McGovern, B.K. Alsberg, D.B. Kell, N.A. Logan, Detection of the dipicolinic acid biomarker in bacillus spores using curie-point pyrolysis mass spectrometry and fourier transform infrared spectroscopy. Anal. Chem. 72, 119–127 (2000)CrossRefGoogle Scholar
  16. 16.
    L.B. Kong, P.F. Zhang, G.W. Wang, P. Setlow, Y.Q. Li, Characterization of bacterial spore germination using phase contrast microscopy, fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat. Protoc. 6, 625–639 (2011)CrossRefGoogle Scholar
  17. 17.
    L.B. Kong, P.F. Zhang, J. Yu, P. Setlow, Y.Q. Li, Monitoring the kinetics of uptake of a nucleic acid stain during the germination of single spores of Bacillus species”. Anal. Chem. 82, 8717–8724 (2010)CrossRefGoogle Scholar
  18. 18.
    L.B. Kong, P.F. Zhang, P. Setlow, Y.Q. Li, Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy and optical tweezers. Anal. Chem. 82, 3840–3847 (2010)CrossRefGoogle Scholar
  19. 19.
    P.F. Zhang, W. Garner, X. Yi, J. Yu, Y.Q. Li, P. Setlow, Factors affecting the variability in the time between addition of nutrient germinants and rapid DPA release during germination of spores of Bacillus species. J. Bacteriol. 192, 3608–3619 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Magge, A.C. Granger, P.G. Wahome, B. Setlow, V.R. Vepachedu, C.A. Loshon, L. Peng, D. Chen, Y.Q. Li, P. Setlow, Role of dipicolinic acid in the germination, stability and viability of spores of Bacillus subtilis. J. Bacteriol. 190, 4798–4807 (2008)CrossRefGoogle Scholar
  21. 21.
    C.A. Allen, F. Babakhani, P. Sears, L. Nguyen, J.A. Sorg, Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores. Antimicrob. Agents Chemother. 57(1), 664–667 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Samaneh Shahrokh Esfahani
    • 1
  • Giti Emtiazi
    • 1
    • 3
  • Mohsen Rabbani
    • 2
  1. 1.Department of BiologyUniversity of IsfahanIsfahanIslamic Republic of Iran
  2. 2.Department of Biomedical EngineeringUniversity of IsfahanIsfahanIslamic Republic of Iran
  3. 3.Department of BiotechnologyShahid Ashrafi Esfahani UniversityIsfahanIslamic Republic of Iran

Personalised recommendations