Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis

  • Toktam Mohammadi-Moghaddam
  • Seyed M. A. Razavi
  • Ameneh Sazgarnia
  • Masoud Taghizadeh
Original Paper


The objective of this study is to develop calibration models in order to predict the moisture content and textural characteristics (including fracture force, hardness, apparent modulus of elasticity, and compressive energy) of pistachio kernels roasted at different temperatures (90, 120 and 150 °C), times (20, 35 and 50 min), and air velocities (0.5, 1.5 and 2.5 m/s) by using visible/near infrared spectroscopy and PLSR. The effects of different pre-processing methods and spectra treatments such as normalization, multiplicative scatter correction (MSC), standard normal variate transformation, median filter, Savitzky–Golay, wavelet, and differentiation (first derivative (D1) and second derivative (D2)) were analyzed. High correlation between Vis/NIR measurements with fracture force and apparent modulus of elasticity were obtained with the combination of SNV, wavelet, and D1. NIR measurements correlated well with hardness and compressive energy. Meanwhile, moisture content had correlation with SNV, median filter, D1; SNV, Savitzky–Golay, D1 and MSC, median filter, D1 respectively.


Near infrared spectroscopy Non-destructive method Nut Reflectance Roasting Texture 



The authors thank Dr. Raphael A. Viscarra Rossel for providing us ParLes software free of charge.


  1. 1.
    FAOSTAT. FAOSTAT database results. Accessed 29 Sept 2017
  2. 2.
    H. Miraliakbari, F. Shahidi, Lipid class compositions, tocopherols and sterols of tree nut oils extracted with different solvents. J. Food Lipids 15, 81–96 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Özdemir, F.G. Seyhan, A.K. Bakan, G.Ö. Ilter, O. Devres, Analysis of internal browning of roasted hazelnuts. Food Chem. 73, 191–196 (1999)CrossRefGoogle Scholar
  4. 4.
    A. Burdack-Freitag, P. Schieberle, Changes in the key odorants of Italian hazelnuts (Corylus avellana L. Var. Tonda Romana) induced by roasting. ‎J. Agric. Food Chem. 58, 6351–6359 (2010)CrossRefGoogle Scholar
  5. 5.
    J.S. Amaral, S. Casal, R. Seabra, B.P.P. Oliveira, Effects of roasting on hazelnut lipids. ‎J. Agric. Food Chem. 54, 1315–1321 (2006)CrossRefGoogle Scholar
  6. 6.
    C. Alamprese, S. Ratti, M. Rossi, Effects of roasting conditions on hazelnut characteristics in a two-step process. J. Food Eng. 95, 272–279 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Saklar, S. Katnas, S. Ungan, Determination of optimum hazelnut roasting conditions. Int. J. Food Sci. Technol. 36, 271–281 (2001)CrossRefGoogle Scholar
  8. 8.
    S. Saklar, Optimization of hazelnut roasting process by using response surface methodology. PhD thesis, METU, Ankara, 213 pages, (1999)Google Scholar
  9. 9.
    L.B. Emily, D.B. Terri, A.W. Lester, Effect of cultivar ,roasting method on composition of roasted soybeans. J. Sci. Food Agric. 89(5), 821–826 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Mohammadi-Moghaddam, S.M.A. Razavi, M. Taghizadeh, A. Sazgarnia, Sensory and instrumental assessment of roasted pistachio nut/kernel by partial least square (PLS) regression analysis: effect of roasting conditions. J. Food Sci. Technol. 53(1), 370–380 (2016)CrossRefGoogle Scholar
  11. 11.
    D.I. Akaaimo, A.O. Raji, Some physical, engineering properties of prosopis Africana seed. J. Biosyst. Eng. 95, 197–205 (2006)CrossRefGoogle Scholar
  12. 12.
    S.J. Kays, Integrated View of Fruit & Vegetable Quality, ed. by W.J. Florkowski, S.E. Prussia, R.L. Shewfelt, P.A. Lancaster, On-line Near Infrared Quality Assessment of High Moisture Plant Products, (Technomic Pub, Lancaster, 2000). pp. 119–127Google Scholar
  13. 13.
    B.G. Osborne, in Near-Infrared Spectroscopy in Food Analysis, Encyclopedia of Analytical Chemistry, ed. by A. Robert, Meyers (Wiley, Chichester, 2006), p. 976709, (ISBN 0471)Google Scholar
  14. 14.
    S.R. Delwiche, R.A. Graybosch, L.E. Hansen, E. Souza, F.E. Dowell, Single kernel near-infrared analysis of tetraploid (Durum) wheat for classification of the waxy condition. Cereal Chem. 83(3), 287–292 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Valipour, Ability of box jenkins models to estimate the reference potential evapotranspiration (a case study: Mehrabad Synoptic Station, Tehran, Iran). IOSR—J. Agric. Vet. Sci. 1(5), 1–11 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Valipour, M.E. Banihabib, S.M.R. Behbahani, Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Valipour, Variations of land use and irrigation for next decades under different scenarios. IRRIGA 1(1), 262–288 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Valipour, M.A. Gholami Sefidkouhi, M. Raeini-Sarjaz, Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manage 180(A), 50–60 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Kashaninejad, L.G. Tabil, in Integrated View of Postharvest Biology and Technology of Tropical and Subtropical Fruits, Ed. by E. Yahia, Pistachio (Pistacia vera L.), (Woodhead Publishing, Cambridge, 2011). pp. 1–30, (ISBN 978-0-85709-090-4)Google Scholar
  20. 20.
    F. Goktas, Seyhan, Effect of soaking on salting, moisture uptake of pistachio nuts (Pistachia vera L.) from Turkiye. GIDA 28(4), 395–400 (2003)Google Scholar
  21. 21.
    A.M. Davies, A. Grant, Review: near-infra-red analysis of food. Int. J. Food. Sci. Technol. 22, 191–207 (1987)CrossRefGoogle Scholar
  22. 22.
    H. Cen, Y. He, Theory, application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 18, 72–83 (2007)CrossRefGoogle Scholar
  23. 23.
    B.M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Nondestructive measurement of fruit, vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46, 99–118 (2007)CrossRefGoogle Scholar
  24. 24.
    M.J.C. Pontes, S.R.B. Santos, M.C.U. Araujo, L.F. Almeida, R.A.C. Lima, E.N. Gaiao, U.T.C.P. Souto, Classification of distilled alcoholic beverages, verification of adulteration by near infrared spectrometry. Food Res. Int. 39, 182–189 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Yoon, B. Lee, C. Han, Calibration transfer of near-infrared spectra based on compression of wavelet coefficients. Chemom. Intell. Lab. Syst. 64, 1–14 (2002)CrossRefGoogle Scholar
  26. 26.
    R.A. Rossel, ParLeS: software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 90, 72–83 (2008)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    M.I. Kavdir, R. Lub, D. Ariana, M. Ngouajio, Visible, near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers. Postharvest Biol. Technol. 44, 165–174 (2007)CrossRefGoogle Scholar
  29. 29.
    P. Penchaiya, E. Bobelyn, B.E. Verlinden, B.M. Nicolaï, W. Saeys, Non-destructive measurement of firmness, soluble solids content in bell pepper using NIR spectroscopy. J. Food Eng. 94, 267–273 (2009)CrossRefGoogle Scholar
  30. 30.
    B. Park, J.A. Abbott, K.J. Lee, C.H. Choi, K.H. Choi, Near-infrared diffuse reflectance for quantitative, qualitative measurement of soluble solids, firmness of delicious, gala apples. Trans. ASAE 46, 1721–1731 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Toktam Mohammadi-Moghaddam
    • 1
    • 2
  • Seyed M. A. Razavi
    • 2
  • Ameneh Sazgarnia
    • 3
  • Masoud Taghizadeh
    • 2
  1. 1.Department of Food Science and TechnologyNeyshabur University Of Medical SciencesNeyshaburIran
  2. 2.Department of Food Science and TechnologyFerdowsi University of Mashhad (FUM)MashhadIran
  3. 3.Department of Medical Physics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations