Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates

  • Yasser Chim-Chi
  • Santiago Gallegos-Tintoré
  • Cristian Jiménez-Martínez
  • Gloria Dávila-Ortiz
  • Luis Chel-Guerrero
Original Paper


Salvia hispanica seeds were defatted by compression and this led to an increase in their fiber and protein contents. Consumption of this fiber improves bowel function and reduces blood glucose and cholesterol levels. Given its amino acids composition, S. hispanica deffated flour can have an antioxidant effect, protect the body from free radicals, and prevent inflammatory diseases. For this study, S. hispanica seeds were pressed with 22.07% of fat, 12.62% of protein, and 36.46% of fiber (d.b.). A protein concentrate was obtained from defatted flour by alkaline solubilization and acid precipitation allowing fiber separation. The concentrate had 77.26% of protein, the isolated fiber had 72.54% of protein. The concentrate was hydrolyzed with Alcalase–Flavourzyme for up to 240 min. The obtained hydrolyzates had equal degrees of hydrolysis (p < 0.05) and molecular weight of 21.99 and 34.16 kDa, corresponding to 11S globulin fractions. The antioxidant activity was measured by β-carotene discoloration, iron reducing antioxidant power and chelation (iron and copper) in hydrolyzates. The degree of hydrolysis and the first three antioxidant analyses showed comparable values (83%). Copper chelation decreased with time (values of 54–38%).


Salvia hispanica Fiber Hydrolyzate Antioxidant 


  1. 1.
    R. Ayerza, W. Coates, M. Lauria, Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poult. Sci. 81(6), 826–837 (2002)CrossRefGoogle Scholar
  2. 2.
    V. Ixtaina, S. Nolasco, M. Tomas, Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crops Prod. 28, 286–293 (2008)CrossRefGoogle Scholar
  3. 3.
    SAGARPA (Servicio de Información Agroalimentaria y Pesquera, 2016), Accessed 14 March 2016
  4. 4.
    E. Reyes, A. Tecante, M. Valdivia, Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food. Chem. 107, 656–663 (2008)CrossRefGoogle Scholar
  5. 5.
    G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu, I. Marc, Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolyzates. Process Biochem. 42(10), 1419–1428 (2007)CrossRefGoogle Scholar
  6. 6.
    W. Coates, R. Ayerza, Commercial production of Chia in Northwestern Argentina. J. Am. Oil Chem. Soc. 75, 1417–1420 (1998)CrossRefGoogle Scholar
  7. 7.
    N. Mohd Ali, S. Yeap, W. Ho, B. Beh, S. Tan, S. Tan, The promising future of chia, Salvia hispanica L. BioMed Res. Int. 2012 (2012)Google Scholar
  8. 8.
    R. Craig, J. Sons, Application for approval of whole Chia (Salvia hispánica. L) seed and ground whole chia as novel food ingredients. Advisory committee for novel foods and process. (Company David Armstrong, Ireland, 2004) pp. 1–29Google Scholar
  9. 9.
    J. Vázquez, J. Rosado, L. Chel, D. Betancur, Dry processing of chía (Salvia hispanica L.) flour: chemical characterization of fiber and protein. CYTA J. Food 8(2), 117–127 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Saito, D. Hao, T. Ogawa, K. Muramoto, E. Hatakeyama, T. Yasuhara, K. Nokihara, Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51, 3668–3674 (2003)CrossRefGoogle Scholar
  11. 11.
    W. Pryor, D. Church, Aldehides, hydrogen peroxide, and organic radical as mediators of oxygen toxicity. Free Rad. Biol. Chem. 11, 41–46 (1991)CrossRefGoogle Scholar
  12. 12.
    L. Chel, V. Pérez, D. Betancur, G. Dávila., Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. J. Agric. Food. Chem. 50, 584–591, (2002)CrossRefGoogle Scholar
  13. 13.
    C. Mazza, H. Boccalandro, C. Giordano, D. Battista, A. Scopel, C. Ballaré, Functional significance and induction by solar radiation of ultraviolet absorbing sunscreen on field-grown soybean crops. Plant Physiol. 122, 117–125 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Alaiz, J. Navarro, J. Girón, E. Vioque, Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. 591, 181–186 (1992)CrossRefGoogle Scholar
  15. 15.
    J. Hamada, Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. J. Food Sci. 65(2), 305–310 (2000)CrossRefGoogle Scholar
  16. 16.
    M. Yust, J. Pedroche, J. Girón, M. Alaiz, F. Millán, J. Vioque, Production of ACE inhibitory peptides by digestion of chickpea legumin with Alcalase. Food. Chem. 81, 363–369 (2003)CrossRefGoogle Scholar
  17. 17.
    P. Nielsen, D. Petersen, C. Damdmann, Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66, 642–646 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Megías, M. Yust, J. Pedroche, H. Lquari, J. Girón, M. Alaiz, F. Millán, J. Vioque, Purification of an ACE inhibitory peptide after hydrolysis of sunflower protein isolates. J. Agric. Food. Chem. 52, 1928–1932 (2004)CrossRefGoogle Scholar
  19. 19.
    E. Pastor, R. Juan, J. Pastor, M. Alaiz, J. Vioque, Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT Food Sci. Technol. 42, 705–709 (2009)CrossRefGoogle Scholar
  20. 20.
    I. Benzie, J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)CrossRefGoogle Scholar
  21. 21.
    P. Carter, Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Analyt. Biochem. 40(2), 450–458 (1971)CrossRefGoogle Scholar
  22. 22.
    A. Saiga, S. Tanabe, T. Nidhimura, Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food. Chem. 51(12), 3361–3667 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Schägger, G. von Jagow, Tricine–sodium dodecil sulfate–poliacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 KDa. Anal. Biochem. 166(2), 368–379 (1987)CrossRefGoogle Scholar
  24. 24.
    D. Montgomery, Diseño y análisis de experimentos, 2nd edn. (Limusa Wiley, Mexico, 2005), pp. 100–102Google Scholar
  25. 25.
    P.G. Peiretti, F. Gai, Fatty acid and nutritive quality of chia (Salvia hispanica L.) seeds and plant during growth. Anim. Feed Sci. Technol. 148(2), 267–275 (2009)CrossRefGoogle Scholar
  26. 26.
    R. Ayerza, W. Coates, The omega-3 enriched eggs: the influence of dietary linolenic fatty acid source combination on egg production and composition. Can. J. Anim. Sci. 81, 355–362 (2001)CrossRefGoogle Scholar
  27. 27.
    M. Capitani, V. Spotorno, S. Nolasco, M. Tomás, Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT Food Sci. Technol. 45(1), 94–102 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Pedroche, M. Yust, J. Girón, M. Alaiz, F. Millán, J. Vioque, Utilization of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. J. Sci. Food Agric. 960–964 (2002)Google Scholar
  29. 29.
    M. Perez, M. Serra, M. Del Rio, Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 39(1), 84–92 (2006)CrossRefGoogle Scholar
  30. 30.
    H. Korhonen, A. Pihlanto, Bioactive peptides: Production and functionality. Int. Dairy J. 16, 945–960 (2006)CrossRefGoogle Scholar
  31. 31.
    A. Papadopoulou, R. Frazier, Characterization of protein-polyphenol interactions. Trends Food Sci. Technol. 15(3–4), 186–190 (2004)CrossRefGoogle Scholar
  32. 32.
    L. Xu, L. Diosady, Interactions between canola proteins and phenolic compounds in aqueous media. Food Res. Int. 33(9), 725–731 (2000)CrossRefGoogle Scholar
  33. 33.
    FAO, Energy and Protein Requirements. (FAO/WHO/UNU, Geneva, 1985)Google Scholar
  34. 34.
    G. Schaafsma, The protein digestibility–corrected amino acid score. J. Nutr. 130(7), 1865S–1867S (2000)CrossRefGoogle Scholar
  35. 35.
    C. Megías, J. Pedroche, M. Yust, M. Alaíz, J. Girón, F. Millán, J. Vioque, Affinity purification of copper-chelating peptides fron sunflower protein hydrolyzates. J. Agric. Food Chem. 55(16), 6509–6514 (2007)CrossRefGoogle Scholar
  36. 36.
    J. Carrasco, A. Hernández, C. Jiménez, C. Jacinto, M. Alaiz, J. Girón, G. Dávila, Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolyzates. Food Chem. 135(3), 1789–1795 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Wroblewska, M. Karamac, R. Amarowicz, A. Szymkiewicz, A. Troszynka, E. Kubicka, Inmunoreactive properties of peptide fractions of cow whey milk proteins alter enzymatic hidrolysis. Int. J. Food Sci. Technol. 39, 839–850 (2004)CrossRefGoogle Scholar
  38. 38.
    A. Dávalos, M. Miguel, B. Bartolomé, R. López-Fandiño, Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolisis. J. Food Protect. 67, 1939–1944 (2004)CrossRefGoogle Scholar
  39. 39.
    R. Eisenthal, M. Danson, (eds.), Enzyme Assays, 2nd edn. Practical Approach Series; 257 (Oxford University Press, 2002), pp. 20–22Google Scholar
  40. 40.
    I. Salazar, C. Segura, L. Chel, D. Betancur, in Scientific, Health and Social Aspects of the Food Industry, ed. by B. Valdez. Antihypertensive and antioxidant effects of functional foods containing chia protein hydrolyzates, (InTech, Rijeka, 2012) ISBN 978-953-307-916-5, pp. 381–398Google Scholar
  41. 41.
    L. Chel, M. Domínguez, A. Martínez, G. Dávila, D. Betancur, Lima bean (Phaseolus lunatus) protein hydrolyzates with ACE-I inhibitory activity. Food Nutr. Sci. 3(4), 511–521 (2012)CrossRefGoogle Scholar
  42. 42.
    D. Marrufo, M. Segura, L. Chel, D. Betancur, Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolyzates with biological activity. Food. Chem. 138(1), 77–83 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Sandoval, O. Paredes, Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J. Agric. Food Chem. 61(1), 193–201 (2012)CrossRefGoogle Scholar
  44. 44.
    D. Doucet, D.E. Otter, S.F. Gauthier, E.A. Foegeding, Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity. J. Agric. Food. Chem. 51(21), 6300–6308 (2003)CrossRefGoogle Scholar
  45. 45.
    X. Peng, B. Kong, X. Xia, Q. Liu, Reducing and radical-scavenging activities of whey protein hydrolyzates prepared with Alcalase. Int. Diary J. 20(5), 360–365 (2010)CrossRefGoogle Scholar
  46. 46.
    L. Zhu, J. Chen, X. Tang, Y. Xiong, Reducing, radical scavenging, and chelation properties of in vitro digests of Alcalase-treated zein hydrolyzate. J. Agric. Food Chem. 56, 2714–2721 (2008)CrossRefGoogle Scholar
  47. 47.
    T. Chuang-He, W. Xiang-Sheng, Y. Xiao-Quan, Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolyzates. Food Chem. 114(4), 1484–1490 (2009)CrossRefGoogle Scholar
  48. 48.
    K. Zhu, H. Zhou, H. Quian, Antioxidant and free radical-scavenging activities of wheat germ proteins hydrolyzates (WGPH) prepared with Alcalase. Process Biochem 41(6), 1296–1302 (2006)CrossRefGoogle Scholar
  49. 49.
    B. Kong, Y. Xiong, Antioxidant activity of zein hydrolyzates in a liposome system and the possible mode of action. J. Agric. Food Chem. 54, 6059–6068 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Escuela Nacional de Ciencias BiológicasInstituto Politecnico NacionalDel. Gustavo A. MaderoMexico
  2. 2.Facultad de Ingenieria QuimicaUniversidad Autonoma de YucatanMeridaMexico

Personalised recommendations