Antimicrobial and antioxidant capacity of biodegradable gelatin film forming solutions incorporated with different essential oils

  • Yunus Alparslan
Original Paper


Biodegradable film forming solutions prepared by gelatin (4% w/v) and different concentrations of thyme, orange, sage, peppermint and clove essential oils (EOs) were investigated for their antioxidant and antimicrobial activities. Total phenolic contents and the antioxidant activity of EOs and gelatin film forming solutions incorporated with EOs were determined by Folin–Ciocalteau and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays, respectively. Antimicrobial activity of gelatin film forming solutions incorporated with different EOs were tested on yeast Candida albicans, Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. Among the EOs studied, thyme and clove EOs showed the highest values in total phenolic content (279,797 and 251,663 mg/L gallic acid) while sage EO had the lowest total phenolic content (14,533 mg/L gallic acid). Total phenolic content of the gelatin film forming solution combined with EOs increased proportional to the EO concentration. Antioxidant capacities of the EOs were found to be high which is supposed to be directly related to the active chemical substances of the EOs. The antioxidant properties of the tested EOs were correlated with total phenolic content. EOs showed potential antimicrobial activity against tested microorganisms. Antimicrobial capacity of the combination of gelatin film forming solution with EOs increased depending on the EO concentration. The study results revealed out that biological activities of biodegradable gelatin film forming solution may be effectively enhanced by using herbal essential oils that have strong biochemical properties.


Biodegradable film Gelatin Essential oil Antioxidant Antimicrobial Phenolic content 



I would like to thank Hatice Hasanhocaoğlu Yapıcı, Cansu Metin, and Taçnur Baygar for their contribution and Tuba Baygar for English editing.


  1. 1.
    S.M. Ojagh, M. Rezaei, S.H. Razavi, S.M.H. Hosseini, Food Chem. 120, 193–198 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Kakaei, Y. Shahbazi, LWT-Food Sci. Technol. 72, 432–438 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Alparslan, C. Metin, H.H. Yapıcı, T. Baygar, A. Günlü, T. Baygar, J. Food Saf. Food Qual.-Archiv für Lebensmittelhygiene 68, 69–78 (2017)Google Scholar
  4. 4.
    E. Aşık, K. Candoğan, J. Food Qual. 37, 237–246 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernandez-López, J. Perez-Alvarez, Food Cont. 19, 1130–1138 (2008)CrossRefGoogle Scholar
  6. 6.
    I. Karabagias, A. Badeka, M.G. Kontominas, Meat Sci. 88, 109–116 (2011)CrossRefGoogle Scholar
  7. 7.
    D.D. Jayasena, C. Jo, Trends Food Sci. Technol. 34, 96–108 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Kulisic, A. Radonic, V. Katalinic, M. Milos, Food Chem. 85, 633–640 (2004)CrossRefGoogle Scholar
  9. 9.
    J. Bonilla, E. Fortunat, M. Vargas, A. Chiralt, J.M. Kenny, J. Food Eng. 119, 236–243 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Amorati, M.C. Foti, L. Valgimigli, J. Agric. Food Chem. 61, 10835–10847 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Tongnuanchan, S. Benjakul, J. Food Sci. 79, R1231–R1249 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Perricone, E. Arace, M.R. Corbo, M. Sinigaglia, A. Bevilacqua, Front. Microbiol. 6, 1–7 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Gómez-Estaca, A.L. De Lacey, M.E. López-Caballero, M.C. Gómez-Guillén, P. Montero, Food Microbiol. 27, 889–896 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Waterhouse, Am. J. Enol. Vitic. 28, 1–3 (1999)Google Scholar
  15. 15.
    W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, LWT-Food Sci. Technol. 28, 25–30 (1995)CrossRefGoogle Scholar
  16. 16.
    L.L. Mensor, F.S. Menezes, G.G. Leitão, A.S. Reis, T.C.D. Santos, C.S. Coube, S.G. Leitão, Phytother. Res. 15, 127–130 (2001)CrossRefGoogle Scholar
  17. 17.
    NCCLS, Approved Standard NCCLS Publication M2-A5, Villanova, PA (1993)**Google Scholar
  18. 18.
    I. Gokbulut, T. Bilenler, I. Karabulut, Int. J. Food Proper. 16, 1442–1451 (2013)CrossRefGoogle Scholar
  19. 19.
    L.M. Reyes Méndez, Doctoral dissertation, Universidade de São Paulo (2017)Google Scholar
  20. 20.
    M.M. Özcan, Ö. Erel, E.E. Herken, J. Med. Food 12, 198–202 (2009)CrossRefGoogle Scholar
  21. 21.
    J.H. Li, J. Miao, J.L. Wu, S.F. Chen, Q.Q. Zhang, Food Hydrocoll. 37, 166–173 (2014)CrossRefGoogle Scholar
  22. 22.
    M.C. Foti, J. Pharm. Pharmacol. 59, 1673–1685 (2007)CrossRefGoogle Scholar
  23. 23.
    S.Y. Sung, L.T. Sin, T.T. Tee, S.T. Bee, A.R. Rahmat, W.A.W.A. Rahman, A. Tan, M. Vikhraman, Trends Food Sci. Technol. 33, 110–123 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Ruiz-Navajas, M. Viuda-Martos, E. Sendra, J.A. Perez-Alvarez, J. Fernández-López, Food Cont. 30, 386–392 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Muthaiyan, E.M. Martin, S. Natesan, P.G. Crandall, B.J. Wilkinson, S.C. Ricke, J. Appl. Microbiol. 112, 1020–1033 (2012)CrossRefGoogle Scholar
  26. 26.
    S.M. Omram, S. Esmailzadeh, Jundishapur J. Microbiol. 2, 53–60 (2009)Google Scholar
  27. 27.
    N. Celikel, G. Kavas, Czech J. Food Sci. 26, 174–181 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Seafood Processing Technology, Faculty of FisheriesMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations