Optimization and analysis of microwave-assisted extraction of bioactive compounds from Mimosa pudica L. using RSM & ANFIS modeling

  • Vinothapooshan Ganesan
  • Vijaya Gurumani
  • Selvaraj Kunjiappan
  • Theivendran Panneerselvam
  • Balasubramanian Somasundaram
  • Suthendran Kannan
  • Anindita Chowdhury
  • Govindraju Saravanan
  • Chiranjib Bhattacharjee
Original Paper
  • 53 Downloads

Abstract

The central composite rotatable design (CCRD) based response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS) statistical methodology was used to design and identify highly efficient extraction process parameters to get high yield of bioactive compound from Mimosa pudica L. In general, many of the process parameters are need to be effectively involved to maximize the yield of bioactive compounds. In this relation, the independent process parameters such as methanol concentration (X 1), microwave power (X 2), irradiation temperature (X 3) and irradiation time (X 4) was chosen in the process of microwave assisted extraction (MAE). The observed studied parametes were produced effective results in the range of 60–85% methanol concentration, 15–25% microwave power, 40–60 °C irradiation temperature and irradiation time 10–15 min. Moreover the optimal yields of TPC and TFC are 635–640 mg gallic acid equivalents (GAE)/g and 61.53–61.76 mg rutin equivalents (RU)/g of extract, and their antioxidant activities are 68.7–72.6% DPPHsc, 76.1–76.86% ABTSsc and FRAB value of 65.24–66.94 µg mol (Fe (II))/g could be obtained for specific optimized process variables. Further, the bioactive compound mimopudine was identified through high performance liquid chromatography (HPLC) in the obtained extract.

Keywords

Mimosa pudica L. RSM ANFIS CCRD Bioactive compounds Mimopudine 

Notes

Acknowledgements

We gratefully thank the Chancellor, Vice-chancellor and Directors of Kalasalingam University, Krishnankoil, India for research fellowships and utilizing research facilities. We thank Prof. Z. Maciej Gliwicz, Ms. Ewa Babkiwics, Dr. Piotr Maszczyk, Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warszawa, Poland, for their prompt support and suggestions.

References

  1. 1.
    Y.-Z. Fang, S. Yang, G. Wu, Free radicals, antioxidants, and nutrition. Nutrition 18(10), 872–879 (2002)CrossRefGoogle Scholar
  2. 2.
    I. Fridovich, Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann. N. Y. Acad. Sci. 893(1), 13–18 (1999)CrossRefGoogle Scholar
  3. 3.
    M.A. Babizhayev, Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA Clin. 6, 49–68 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Giorgio, M. Trinei, E. Migliaccio, P.G. Pelicci, Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 8(9), 722–728 (2007)CrossRefGoogle Scholar
  5. 5.
    B. Poljsak, D. Šuput, I. Milisav, (2013). Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative medicine and cellular longevity 2013Google Scholar
  6. 6.
    E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative stress and antioxidant defense. World Allergy Organ. J. 5(1), 9 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Harborne, (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer, BerlinGoogle Scholar
  8. 8.
    K. Selvaraj, R. Chowdhury, C. Bhattacharjee, Optimization of the solvent extraction of bioactive polyphenolic compounds from aquatic fern Azolla microphylla using response surface methodology. Int. Food Res. J. 21(4), (2014)Google Scholar
  9. 9.
    H. Wildenradt, V. Singleton, The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Viticult. 25(2), 119–126 (1974)Google Scholar
  10. 10.
    T. Amalraj, S. Ignacimuthu, Hyperglycemic effect of leaves of Mimosa pudica Linn. Fitoterapia 73(4), 351–352 (2002)CrossRefGoogle Scholar
  11. 11.
    J. Berhaut, Flore illustree du Senegal. Dicotyledones: tome 3. Connaracees a Euphorbiacees. Dakar: Gouvernement du Senegal, Ministere du Developpement Rural et de l’Hydraulique, Direction des Eaux et Forets 634p. Illus. Euphorbiaceae, 354–607 (1975)Google Scholar
  12. 12.
    E.N. Bum, D. Dawack, M. Schmutz, A. Rakotonirina, S. Rakotonirina, C. Portet, A. Jeker, H.-R. Olpe, P. Herrling, Anticonvulsant activity of Mimosa pudica decoction. Fitoterapia 75(3), 309–314 (2004)Google Scholar
  13. 13.
    T. Nazeema, V. Brindha, Antihepatotoxic and antioxidant defense potential of Mimosa pudica. Int. J. Drug Discov. 1, 1–4 (2009)Google Scholar
  14. 14.
    S. Arokiyaraj, N. Sripriya, R. Bhagya, B. Radhika, L. Prameela, N. Udayaprakash, Phytochemical screening, antibacterial and free radical scavenging effects of Artemisia nilagirica, Mimosa pudica and Clerodendrum siphonanthus —an in-vitro study. Asian Pac. J. Trop. Biomed. 2(2), S601–S604 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Joana Gil-Chávez, J.A. Villa, J. Fernando Ayala-Zavala, J. Basilio Heredia, D. Sepulveda, E.M. Yahia, G.A. González-Aguilar, Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr. Rev. Food Sci. Food Saf. 12(1), 5–23 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Capitani, A.P. Sobolev, M. Delfini, S. Vista, R. Antiochia, N. Proietti, S. Bubici, G. Ferrante, S. Carradori, F.R.D. Salvador, (2014). NMR methodologies in the analysis of blueberries. Electrophoresis 35(11), 1615–1626CrossRefGoogle Scholar
  17. 17.
    G.J. Swamy, K. Muthukumarappan, Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food. Chem. 220, 108–114 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Kratchanova, E. Pavlova, I. Panchev, The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr. Polym. 56(2), 181–185 (2004)CrossRefGoogle Scholar
  19. 19.
    S. Wang, F. Chen, J. Wu, Z. Wang, X. Liao, X. Hu, Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J. Food Eng. 78(2), 693–700 (2007)CrossRefGoogle Scholar
  20. 20.
    M.L. Fishman, H.K. Chau, P.D. Hoagland, A.T. Hotchkiss, Microwave-assisted extraction of lime pectin. Food Hydrocoll 20(8), 1170–1177 (2006)CrossRefGoogle Scholar
  21. 21.
    M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008)CrossRefGoogle Scholar
  22. 22.
    G. Zhang, L. He, M. Hu, Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innov. Food Sci. Emerg. Technol. 12(1), 18–25 (2011)CrossRefGoogle Scholar
  23. 23.
    H.H. Wijngaard, N. Brunton, The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology. J. Food Eng. 96(1), 134–140 (2010)CrossRefGoogle Scholar
  24. 24.
    L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wikström, S. Wold, (2000). Design of Experiments. Principles and Applications, pp. 172–174Google Scholar
  25. 25.
    C.-Y. Gan, A.A. Latiff, (2011). Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 124(3), 1277–1283CrossRefGoogle Scholar
  26. 26.
    K. Yang, B.S. El-Haik, (2003). Design for Six Sigma. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    I. Langhans, (2000). Designs for Response Surface Modelling-Quantifying the Relation Between Factors and Responses. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    M. Auta, B. Hameed, Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chem. Eng. J. 175, 233–243 (2011)CrossRefGoogle Scholar
  29. 29.
    R.F. Gunst, (1996). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Taylor & Francis, Milton ParkGoogle Scholar
  30. 30.
    K.N. Prasad, F.A. Hassan, B. Yang, K.W. Kong, R.N. Ramanan, A. Azlan, A. Ismail, Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. peels. Food. Chem. 128(4), 1121–1127 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Subasi, Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)CrossRefGoogle Scholar
  32. 32.
    V. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16(3), 144–158 (1965)Google Scholar
  33. 33.
    P. Siddhuraju, K. Becker, Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food. Chem. 51(8), 2144–2155 (2003)CrossRefGoogle Scholar
  34. 34.
    W. Brand-Williams, M.-E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995)CrossRefGoogle Scholar
  35. 35.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9), 1231–1237 (1999)CrossRefGoogle Scholar
  36. 36.
    I.F. Benzie, J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)CrossRefGoogle Scholar
  37. 37.
    R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food. Chem. 48(8), 3396–3402 (2000)CrossRefGoogle Scholar
  38. 38.
    A. Atkinson, A. Donev, R. Tobias, (2007). Optimum Experimental Designs, with SAS. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Vinothapooshan Ganesan
    • 1
  • Vijaya Gurumani
    • 2
  • Selvaraj Kunjiappan
    • 3
  • Theivendran Panneerselvam
    • 4
  • Balasubramanian Somasundaram
    • 3
  • Suthendran Kannan
    • 5
  • Anindita Chowdhury
    • 6
  • Govindraju Saravanan
    • 7
  • Chiranjib Bhattacharjee
    • 8
  1. 1.Department of PharmaceuticsArulmigu Kalasalingam College of PharmacyVirudhunagarIndia
  2. 2.Department of Computer Science and EngineeringKalasalingam Institute of TechnologyVirudhunagarIndia
  3. 3.Sir CV Raman-KS Krishnan International Research CentreKalasalingam UniversityVirudhunagarIndia
  4. 4.Department of Pharmaceutical ChemistryKaravali College of PharmacyMangaloreIndia
  5. 5.National Cyber Defence Research CentreKalasalingam UniversityVirudhunagarIndia
  6. 6.Department of BiotechnologyKalasalingam UniversityVirudhunagarIndia
  7. 7.MNR College of PharmacyTelanganaIndia
  8. 8.Department of Chemical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations