Effect of seawater reared on the nutritional composition and antioxidant activity of edible muscle in smoltified-landlocked masu salmon (Oncorhynchus masou masou)

  • Ryusuke Tanaka
  • Katsuhisa Uchida
  • Mami Ishimaru
  • Meiko Ito
  • Naoto Matsumoto
  • Yousuke Taoka
  • Hideo Hatate
Original Paper


A new system of aquaculture for landlocked masu salmon (Oncorhynchus masou masou) has recently been developed in the southern Kyushu Island, Miyazaki, Japan. In this system, moderately silvering fish (smolt salmon) are artificially transported from the freshwater aquaculture ponds to floating seawater fish preserve, and they are then aquacultured during winter season, starting from December to the following April. As a result, their growth and body mass were greatly increased (total length: 21.25 ± 1.04–37.80 ± 3.71 cm; body weight: 81.75 ± 19.91–632.00 ± 172.42 g; condition factor: 8.45 ± 1.44–11.4 ± 0.74). In addition, There was a marked increase in chemical components such as the lipid contents (35.0 ± 9.4–79.2 ± 6.7 mg/g muscle), α-tocopherol (29.0 ± 17.0–178.6 ± 15.0 μg/g muscle), astaxanthin (0.1 ± 0.1–15.2 ± 8.8 μg/g muscle), and anserine (4.75 ± 0.59–10.32 ± 2.68 mg/g muscle) in the seawater-reared landlocked masu salmon. Furthermore, the antioxidant activity of the water soluble extract from the seawater-reared landlocked masu salmon increased from 480.96 ± 79.295–848.99 ± 182.79 μmol Trolox equivalent/g tissue. This new system that involves a short period of aquaculture in seawater not only promotes the growth of landlocked masu salmon, but may also improve its nutritional components and antioxidant activity.


Landlocked masu salmon Lipid contents Carotenoids Anserine Antioxidant activity 



We thank Osamu Akimoto of ‘Yamame no Sato’ for his help in collecting landlocked masu salmon and Enago (, which reviewed the English language.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Japanese Ministry of Agriculture. XI Fishery-4 Fishery and Aquaculture Production The 88th statistical yearbook of ministry of agriculture, forestry and fisheries (2015)Google Scholar
  2. 2.
    T.H. Hsu, Z.Y. Wang, K. Takata, H. Onozato, T. Hara, J.C. Gwo, Aquac. Res. 41, 316–325 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Ogata, S. Konno, Nippon Suisan Gakk 52, 313–318 (1986)CrossRefGoogle Scholar
  4. 4.
    T. Ota, M. Yamada, Nippon Suisan Gakk 40, 707–713 (1974)CrossRefGoogle Scholar
  5. 5.
    B. Giménez, P. Roncalés, J.A. Beltrán, J. Sci. Food Agric. 85, 1033–1040 (2005)CrossRefGoogle Scholar
  6. 6.
    AOAC, Official Methods of Analysis of AOAC International. vol. 16. (Arlington, Virginia, 1997)Google Scholar
  7. 7.
    J. Folch, M. Lees, G.H.S. Stanley, J. Biol. Chem. 226, 497–509 (1957)Google Scholar
  8. 8.
    R. Tanaka, N. Nakazawa, T. Maeda, H. Fukushima, R. Wada, Y. Sugiura, T. Matsushita, H. Hatate, T. Okano, Y. Fukuda, Trans. Jap. Soc. Refrig. Air Cond. Eng. 32, 39–49 (2015)Google Scholar
  9. 9.
    R. Tanaka, M. Ishimaru, H. Hatate, Y. Sugiura, T. Matsushita, Food Chem. 212, 104–109 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Ishimaru, M. Haraoka, H. Hatate, R. Tanaka, Food Anal. Methods 10, 92–99 (2017)CrossRefGoogle Scholar
  11. 11.
    Millipore, Millipore Corporation, Bilerica (1993)Google Scholar
  12. 12.
    T. Yamaguchi, H. Takamura, T. Matoba, J. Terao, Biosci. Biotechnol. Biochem. 62, 1201–1204 (1998)CrossRefGoogle Scholar
  13. 13.
    K.A. Glover, H. Otterå, R.E. Olsen, E. Slinde, G.L. Taranger, Ø. Skaala, Aquaculture 286, 203–210 (2009)CrossRefGoogle Scholar
  14. 14.
    I.A. Johnston, X. Li, V.L.A. Vieira, D. Nickell, A. Dingwall, R. Alderson, P. Campbell, R. Bickerdike, Aquaculture 256, 323–336 (2006)CrossRefGoogle Scholar
  15. 15.
    T. Azuma, S. Noda, T. Yada, M. Ototake, H. Nagoya, S. Moriyama, H. Yamada, T. Nakanishi, M. Iwata, Fish. Sci. 68, 1282–1294 (2002)CrossRefGoogle Scholar
  16. 16.
    J.G. Bell, J. McEvoy, J.L. Webster, F. McGhee, R.M. Millar, J.R. Sargent, J. Agric. Food Chem. 46, 119–127 (1998)CrossRefGoogle Scholar
  17. 17.
    T. Ota, M. Yamada, Nippon Suisan Gakk 40, 699–706 (1974)CrossRefGoogle Scholar
  18. 18.
    C. Caballo, E.M. Costi, M.D. Sicilia, S. Rubio, Food Chem. 134, 1244–1249 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Storebakken, H.K. No, Aquaculture 100, 209–229 (1992)CrossRefGoogle Scholar
  20. 20.
    S. Tolasa, S. Cakli, U. Ostermeyer, Eur. Food Res. Technol. 221, 787–791 (2005)CrossRefGoogle Scholar
  21. 21.
    T. Kitahara, Comp. Biochem. Physiol. B 78, 859–862 (1984)CrossRefGoogle Scholar
  22. 22.
    S.R. Garner, B.D. Neff, M.A. Bernards, J. Fish Biol. 76, 1474–1490 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Polotow, C. Vardaris, A. Mihaliuc, M. Gonçalves, B. Pereira, D. Ganini, M. Barros, Nutrients 6, 5819–5838 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Koriyama, T. Kohata, K. Watanabe, H. Abe, Nippon Suisan Gakk 66, 876–881 (2000)CrossRefGoogle Scholar
  25. 25.
    S. Konosu, M. Ouml, Y. Zay, Hashimoto, Nippon Suisan Gakk 30, 930–934 (1964)CrossRefGoogle Scholar
  26. 26.
    H. Abe, S. Ohmama, Comp. Biochem. Physiol. B 88, 507–511 (1987)CrossRefGoogle Scholar
  27. 27.
    R.M. Love, Chemical Biology of Fishes vol. 1, ed. by R.M. Love ed. (Academic Press, New York, 1970), pp. 222–257Google Scholar
  28. 28.
    A. Van Waarde, Comp. Biochem. Physiol. B 91, 207–228 (1988)CrossRefGoogle Scholar
  29. 29.
    M. Hata, Y. Sato, T. Yamaguchi, M. Ito, Y. Kuno, Nippon Suisan Gakk 54, 1365–1370 (1988)CrossRefGoogle Scholar
  30. 30.
    T. Shirai, S. Fuke, K. Yamaguchi, S. Konosu, Comp. Biochem. Physiol. B 74, 685–689 (1983)CrossRefGoogle Scholar
  31. 31.
    E. Shumilina, R. Slizyte, R. Mozuraityte, A. Dykyy, T.A. Stein, A. Dikiy, Food Chem. 211, 803–811 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Hiraoka, Y. Sakai, K. Sonoda, Rep.Ehime Inst. Ind. Technol. 49, 19–22 (2011)Google Scholar
  33. 33.
    D. Perrone, M. Monteiro, V.N. Castelo-Branco, in Food and Nutritional Components in Focus, ed. by P. R. Victor ed. (Royal Society of Chemistry, London, 2015), pp. 43–60Google Scholar
  34. 34.
    H. Fu, Y. Katsumura, M. Lin, Y. Muroya, K. Hata, K. Fujii, A. Yokoya, Y. Hatano, Radiat. Phys. Chem. 78, 1192–1197 (2009)CrossRefGoogle Scholar
  35. 35.
    H.C. Peng, S.H. Lin, J. Nutr. Sci. Vitaminol. 50, 325–329 (2004)CrossRefGoogle Scholar
  36. 36.
    T. Koriyama, S. Wongso, K. Watanabe, H. Abe, J. Food Sci. 67, 868–873 (2002)CrossRefGoogle Scholar
  37. 37.
    K. Nakaya, T. Kohata, N. Doisaki, H. Ushio, T. Ohshima, Fish. Sci. 72, 877–883 (2006)CrossRefGoogle Scholar
  38. 38.
    D.P. Thakur, K. Morioka, N. Itoh, M. Wada, Y. Itoh, Fish. Sci. 75, 1489–1498 (2009)CrossRefGoogle Scholar
  39. 39.
    D.P. Thakur, K. Morioka, Y. Itoh, A. Obatake, J. Sci. Food Agric. 82, 1541–1550 (2002)CrossRefGoogle Scholar
  40. 40.
    D.P. Thakur, K. Morioka, Y. Itoh, A. Obatake, Fish. Sci. 69, 487–494 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Marine Biology and Environmental Sciences, Faculty of AgricultureUniversity of MiyazakiMiyazakiJapan

Personalised recommendations