Electrical impedance analysis of pork tissues during storage

  • Xue Bai
  • Jumin Hou
  • Lu Wang
  • Minghui Wang
  • Xia Wang
  • Chunhui Wu
  • Libo Yu
  • Jie Yang
  • Yue Leng
  • Yonghai Sun
Original Paper
  • 68 Downloads

Abstract

To explore the changes in the cell physiological status of pork tissues at different storage stages, electrical impedance spectroscopy (EIS) was used in this study. The measured impedance values were analyzed with equivalent circuit models consisting of several electrical components. In order to model the complex pork tissues accurately, a constant phase element (CPE) was introduced instead of Cm in the conventional Fricke model to reflect the capacitance of cell membrane. R2 values of the real part of impedance were within the range between 0.961 and 0.999, and those for the imaginary part were between 0.730 and 0.999. The results suggested that the modified model with CPE can be further developed to monitor tissues conductivity changes and to evaluate cell physiological status of heterogeneous pork tissues in storage. Control and evaluation of meat maturation state with electrical impedance spectroscopy, which is a convenient and inexpensive method, is feasible and applicable.

Keywords

Electrical impedance spectroscopy (EIS) Constant phase element (CPE) Heterogeneous pork tissues Meat aging Equivalent circuit model 

References

  1. 1.
    T.H. Chen, Y.P. Zhu, P. Wang, M.Y. Han, R. Wei, X.L. Xu, G.H. Zhou, The use of the impedance measurements to distinguish between fresh and frozen-thawed chicken breast muscle. Meat Sci. 116, 151–157 (2016)CrossRefGoogle Scholar
  2. 2.
    J.L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, Electrical impedance probing of the muscle food anisotropy for meat ageing control. Food Control 19, 931–939 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Ercolini, I. Ferrocino, A. Nasi, M. Ndagijimana, P. Vernocchi, L.A. Storia, L. Laghi, G. Mauriello, M.E. Guerzoni, F. Villani, Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl. Environ. Microbiol. 77, 7372–7381 (2011)CrossRefGoogle Scholar
  4. 4.
    H.B. Nguyen, L.T. Nguyen, Rapid and non-invasive evaluation of pork meat quality during storage via impedance measurement. Int. J. Food Sci. Technol. 50, 1718–1725 (2015)CrossRefGoogle Scholar
  5. 5.
    C.G. Marta, B. Patricia, T. Fidel, F. Pedro, Low—frequency dielectric spectrum to determine pork meat quality. Innov. Food Sci. Emerg. 11, 376–386 (2010)CrossRefGoogle Scholar
  6. 6.
    F.Y. Wu, S.B. Smith, Ionic strength and myofibrillar protein solubilization. J. Anim. Sci. 65, 597–608 (1987)CrossRefGoogle Scholar
  7. 7.
    C.G. Marta, T. Fidel, F. Pedro, Low frequency dielectric measurements to assess post-mortem ageing of pork meat. LWT Food Sci. Technol. 44, 1465–1472 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, X. Shi, F. You, P. Liu, X. Dong, Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz. Physiol. Meas. 34, N83-96 (2013)Google Scholar
  9. 9.
    H.P. Schwan, Electrical properties of tissues and cell suspensions: mechanisms and models. Int. Conf. IEEE Eng. 1, 70–71 (1994)Google Scholar
  10. 10.
    D. Samuel, S. Trabelsi, Measurement of dielectric properties of intact and ground broiler breast meat over the frequency range from 500 MHz to 50 GHz. Int. J. Poul. Sci. 11, 172–176 (2012)CrossRefGoogle Scholar
  11. 11.
    J.L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. J. Food Eng. 85, 116–122 (2008)CrossRefGoogle Scholar
  12. 12.
    K.R. Foster, J.L. Schepps, R.D. Stoy, H.P. Schwan, Dielectric properties of brain tissue between 0.01 and 10 GHz. Phys. Med. Biol. 24, 1177–1187 (1979)CrossRefGoogle Scholar
  13. 13.
    N.R. Nightingale, V.D. Goodridge, R.J. Sheppard, J.L. Christie, The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys. Med. Biol. 28, 897–903 (1983)CrossRefGoogle Scholar
  14. 14.
    W.T. Joines, Y. Zhang, C. Li, R.L. Jirtle, The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med. Phys. 21, 547–550 (1994)CrossRefGoogle Scholar
  15. 15.
    M. Altmann, U. Pliquett, Prediction of intramuscular fat by impedance spectroscopy. Meat Sci. 72, 666–671 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J. Food Eng. 121, 24–31 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Fricke, A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev. 24, 575–587 (1924)CrossRefGoogle Scholar
  18. 18.
    H. Fricke, A mathematical treatment of the electric conductivity and capacity of disperse systems ii. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Phys. Rev. 26, 678–681 (1925)CrossRefGoogle Scholar
  19. 19.
    L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J. Food Eng. 87, 274–280 (2008)CrossRefGoogle Scholar
  20. 20.
    U. Pliquett, M. Altmann, F. Pliquett, L. Schöberlein, Py—a parameter for meat quality. Meat Sci. 65, 1429–1437 (2003)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, M. Wang, J. Yao, Characterization of colloidal particles using electrical impedance spectroscopy in two-electrode system with carbon probe. Procedia Eng. 102, 322–328 (2015)CrossRefGoogle Scholar
  22. 22.
    K.S. Cole, R.H. Cole, dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)CrossRefGoogle Scholar
  23. 23.
    E.J. Williams, R.J. Johnston, J. Dainty, The electrical resistance and capacitance of the membranes of Nitella translucens. J. Exp. Bot. 15, 1–14 (1964)CrossRefGoogle Scholar
  24. 24.
    R.I. Hayden, C.A. Moyse, F.W. Calder, D.P. Crawford, D.S. Fensom, Electrical impedance studies on potato and Alfalfa tissue. J. Exp. Bot. 20, 177–200 (1969)CrossRefGoogle Scholar
  25. 25.
    M. Itagaki, A. Taya, K. Watanabe, K. Noda, Deviation of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode. Anal. Sci. 18, 641–644 (2002)CrossRefGoogle Scholar
  26. 26.
    P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 443, 149–154 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Skale, V. Doleček, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corros. Sci. 49, 1045–1055 (2007)CrossRefGoogle Scholar
  28. 28.
    R. Pethig, D.B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32, 933–970 (1987)CrossRefGoogle Scholar
  29. 29.
    H.P. Schwan, Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)CrossRefGoogle Scholar
  30. 30.
    J.L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, Dielectric behavior of beef meat in the 1-1500kHz range: Simulation with the Fricke/Cole–Cole model. Meat Sci. 77, 512–519 (2007)CrossRefGoogle Scholar
  31. 31.
    L.C. Ward, Inter-instrument comparison of bioimpedance spectroscopic analysers. Open Med. Dev. J. 1, 3–10 (2009)CrossRefGoogle Scholar
  32. 32.
    T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Colloid Polym. Sci. 171, 249 (1960)Google Scholar
  33. 33.
    K. Asami, T. Hanai, N. Koizumi, Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn. J. Appl. Phys. 19, 359–365 (1980)CrossRefGoogle Scholar
  34. 34.
    J.L. Damez, S. Clerjon, Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 80, 132–149 (2008)CrossRefGoogle Scholar
  35. 35.
    H.L. Elisabeth, M.L. Steven, Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci. 71, 194–204 (2005)CrossRefGoogle Scholar
  36. 36.
    G. Valet, S. Silz, H. Metzger, G. Ruhenstroth-Bauer, Electrical sizing of liver cell nuclei by the particle beam method. Mean volume, volume distribution and electrical resistance. Acta Hepato-Gastroenterol 22, 274–281 (1975)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xue Bai
    • 1
  • Jumin Hou
    • 1
  • Lu Wang
    • 1
  • Minghui Wang
    • 1
  • Xia Wang
    • 1
  • Chunhui Wu
    • 1
  • Libo Yu
    • 1
  • Jie Yang
    • 1
  • Yue Leng
    • 1
  • Yonghai Sun
    • 1
  1. 1.Department of Food Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations