Roselle (Hibiscus sabdariffa) by-product as functional ingredient: effect of thermal processing and particle size reduction on bioactive constituents and functional, morphological, and structural properties

  • Diana M. Amaya-Cruz
  • Iza F. Perez-Ramirez
  • David Ortega-Diaz
  • Mario E. Rodriguez-Garcia
  • Rosalía Reynoso-Camacho
Original Paper


Food industry is in the search of new functional ingredients, so this study was focused on evaluating the effect of thermal processing used to produce roselle beverages, and the effect of particle size reduction, on the retention of bioactive constituents, and physicochemical, functional, and structural properties of Hibiscus sabdariffa calyces. After decoction process (DP), by-products retained up to 56% of polyphenolic compounds, 54% of flavonoids and 44% of anthocyanins; mainly delphinidin 3,5-O-diglucoside (74.1%); besides presenting an increased content of total dietary fiber (DF) as compared to roselle calyces (26%). Viscosity and hydration properties were improved by the DP, which may be related to an increased porosity as observed in the SEM micrographs. Fourier transform infrared spectroscopy spectrum, reflected the differences in the chemical composition of BP and calyx, whereas the X-ray diffraction analysis showed no effect of DP. Interestingly, samples with a large particle size (250–177 µm) presented increased viscosity, which was the most important change for particle size. Therefore, roselle beverage by-product could be a functional ingredient since is an excellent source of phenolic compounds and dietary fiber with improved functional and physicochemical properties as compared to calyces.


Decoction process Bioactive constituents Functional properties Roselle by-product Hibiscus sabdariffa Dietary fiber 



This work was supported by Programa de Fomento a la Agricultura: Componente de Innovación Agroalimentaria 2016, SAGARPA-COFUPRO (640). Authors want to thank Dra. Beatriz Millan Malo and M.en I.Q. Alicia del Real from Centro de Fisica Aplicada y Tecnologia Avanzada UNAM for their technical support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.


  1. 1.
    M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Food Chem. 124, 411 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Satija, F.B. Hu, Curr. Atheroscler. Rep. 14, 505 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Pérez-Jiménez, F. Saura-Calixto, Food Res. Int. 74, 315 (2015)CrossRefGoogle Scholar
  4. 4.
    M.J. Amiot, C. Riva, A. Vinet, Obes. Rev. 17, 573–586 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Sáyago-Ayerdi, I. Goñi, Arch. Latinoam. Nutr. 60, 79 (2010)Google Scholar
  6. 6.
    S.G. Sáyago-Ayerdi, C. Velázquez-López, E. Montalvo-González, I. Goñi, J. Sci. Food Agric. 94, 898 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Guillon, M. Champ, Food Res. Int. 33, 233 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Caprita, R. Caprita, V.O. Simulescu, R.M. Drehe, J. Agroaliment. Process. Technol. 17, 214 (2011)Google Scholar
  9. 9.
    M.C. Chang, W.C. Morris, J. Food Process. Preserv. 14, 335 (1990)CrossRefGoogle Scholar
  10. 10.
    F.A. Hassan, A. Ismail, A. Abdulhamid, A. Azlan, J. Agric. Food Chem. 59, 9102 (2011)CrossRefGoogle Scholar
  11. 11.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Oxidants and Antioxidants Part A (Elsevier, San Diego, 1999)Google Scholar
  12. 12.
    D. Heimler, P. Vignolini, M.G. Dini, F.F. Vincieri, A. Romani, Food Chem. 99, 464 (2006)CrossRefGoogle Scholar
  13. 13.
    M.M. Giusti, R.E. Wrolstad, in Current Protocols in Food Analytical Chemistry (Wiley, Hoboken, 2001)Google Scholar
  14. 14.
    I.C. Rodríguez-Medina, R. Beltrán-Debón, V.M. Molina, C. Alonso-Villaverde, J. Joven, J.A. Menéndez, A. Segura-Carretero, A. Fernández-Gutiérrez, J. Sep. Sci. 32, 3441 (2009)CrossRefGoogle Scholar
  15. 15.
    AOAC Assoc, Off. Anal. Chem. (17th ed.). Gaithersburg (2002)Google Scholar
  16. 16.
    J.A. Robertson, F.D. de Monredon, P. Dysseler, F. Guillon, R. Amado, J.-F. Thibault, LWT-Food Sci. Technol. 33, 72 (2000)CrossRefGoogle Scholar
  17. 17.
    R.A. Anderson, Cereal Chem. 59, 265 (1982)Google Scholar
  18. 18.
    C.F. Chau, Y.L. Huang, Food Chem. 85, 189 (2004)CrossRefGoogle Scholar
  19. 19.
    D. Zhang, F. Montañés, K. Srinivas, T. Fornari, E. Ibáñez, J.W. King, Ind. Eng. Chem. Res. 49, 6691 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Jaime, M. Esperanza, M. Fernández, A. Martín-Cabrejas, R. López-Andréu, F.J. Esteban, J. Agric. Food Chem. 50, 122 (2002)CrossRefGoogle Scholar
  21. 21.
    R. Casquete, S.M. Castro, A. Martín, S. Ruiz-Moyano, J.A. Saraiva, M.G. Córdoba, P. Teixeira, Innov. Food Sci. Emerg. Technol. 31, 37 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Patras, N.P. Brunton, C. O’Donnell, B.K. Tiwari, Trends Food Sci. Technol. 21, 3 (2010)CrossRefGoogle Scholar
  23. 23.
    B. Pejin, A.G. Savic, M. Petkovic, K. Radotic, M. Mojovic, Int. J. Food Sci. Technol. 49, 1500 (2014)CrossRefGoogle Scholar
  24. 24.
    J.M. Campbell, L.L. Bauer, C. Fahey George, A.J.C.L. Hogarth, B.W. Wolf, D.E. Hunter, J. Agric. Food Chem. 45, 3076 (1997)CrossRefGoogle Scholar
  25. 25.
    J.G. Muir, R. Rose, O. Rosella, K. Liels, J.S. Barrett, S.J. Shepherd, P.R. Gibson (n.d.)Google Scholar
  26. 26.
    R. Martínez, P. Torres, M.A. Meneses, J.G. Figueroa, J.A. Pérez-Álvarez, M. Viuda-Martos, Food Chem. 135, 1520 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Peerajit, N. Chiewchan, S. Devahastin, Food Chem. 132, 1891 (2012)CrossRefGoogle Scholar
  28. 28.
    S.N. Raghavendra, S.R. Ramachandra Swamy, N.K. Rastogi, K.S.M.S. Raghavarao, S. Kumar, R.N. Tharanathan, J. Food Eng. 72, 281 (2006)CrossRefGoogle Scholar
  29. 29.
    M.F. de Escalada Pla, P. González, P. Sette, F. Portillo, A.M. Rojas, L.N. Gerschenson, Food Res. Int. 49, 184 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Sangnark, A. Noomhorm, Food Res. Int. 37, 66 (2004)CrossRefGoogle Scholar
  31. 31.
    Q.-B. Ding, P. Ainsworth, G. Tucker, H. Marson, J. Food Eng. 66, 283 (2005)CrossRefGoogle Scholar
  32. 32.
    A. Vázquez-Ovando, G. Rosado-Rubio, L. Chel-Guerrero, D. Betancur-Ancona, LWT-Food Sci. Technol. 42, 168 (2009)CrossRefGoogle Scholar
  33. 33.
    I. Navarro-González, V. García-Valverde, J. García-Alonso, M.J. Periago, Food Res. Int. 44, 1528 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Lario, E. Sendre, J. Garcia-Perez, C. Fuentes, E. Sayas Barbera, J. Fernandez Lopez, J. Perez Alvarez, Innov. Food Sci. Emerg. Technol. 5, 113 (2004)CrossRefGoogle Scholar
  35. 35.
    A. Sharma, A.H. Jana, R.S. Chavan, Compr. Rev. Food Sci. Food Saf. 11, 518 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Figuerola, M.L. Hurtado, A.M. Estévez, I. Chiffelle, F. Asenjo, Food Chem. 91, 395 (2005)CrossRefGoogle Scholar
  37. 37.
    M.A. Shaheen, F.S. El-Nakhlawy, Acta Hortic. 449 (2011)Google Scholar
  38. 38.
    M. Brogren Msc, G.P. Savage, Asia Pacific J Clin Nutr. 12, 219 (2003)Google Scholar
  39. 39.
    M. Chylińska, M. Szymańska-Chargot, B. Kruk, A. Zdunek, Food Chem. 196, 114 (2016)CrossRefGoogle Scholar
  40. 40.
    L.G. Thygesen, M.M. Løkke, E. Micklander, S.B. Engelsen, Trends Food Sci. Technol. 14, 50 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Fragoso, J. Guasch, L. Aceña, M. Mestres, O. Busto, Int. J. Food Sci. Technol. 46, 2569 (2011)CrossRefGoogle Scholar
  42. 42.
    N. Labbé, T.G. Rials, S.S. Kelley, Z.-M. Cheng, J.-Y. Kim, Y. Li, Wood Sci. Technol. 39, 61 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Diana M. Amaya-Cruz
    • 1
  • Iza F. Perez-Ramirez
    • 1
  • David Ortega-Diaz
    • 3
  • Mario E. Rodriguez-Garcia
    • 2
  • Rosalía Reynoso-Camacho
    • 1
  1. 1.Facultad de QuímicaUniversidad Autónoma de QuerétaroQuerétaroMexico
  2. 2.Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  3. 3.Centro de Investigación y Desarrollo Tecnológico en ElectroquímicaPedro EscobedoMexico

Personalised recommendations