Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale

  • Qingran Meng
  • Haoran Fan
  • Yinghao Li
  • Lianfu Zhang
Original Paper


The present study aimed to investigate the effect of different drying methods, i.e., sun drying (SD), hot air drying (AD), vacuum drying (VD), infrared radiation drying (IR), and freeze drying (FD) on the physico-chemical properties of Dendrobium officinale. The results revealed that different drying methods showed significant differences in the color retention, water soluble polysaccharide content, total phenolic content, total flavonoid content, fatty acids, and antioxidant activities. FD, VD, IR and AD led to higher retention of bioactive compounds and better antioxidant activities, and FD showed the best. However, with respect to the water-soluble polysaccharides content, the characteristic components in D. officinale, AD was better than FD. The results showed that the quality of D. officinale depends on the drying method applied. Considering the retention of polysaccharide content and drying processing duration, AD is a promising treatment for D. officinale.


Dendrobium officinale Different drying methods Physico-chemical properties Antioxidant activities 



This work was supported by grants from the Jiangsu province “Collaborative Innovation Center for Food Safety and Quality Control” industry development program, and the Fundamental Research Funds for the Central Universities (JUSRP 51501).


  1. 1.
    L.H. Pan, J. Wang, X.Q. Ye, X.Q. Zha, J.P. Luo, Enzyme-assisted extraction of polysaccharides from Dendrobium chrysotoxum and its functional properties and immunomodulatory activity. LWT-Food Sci. Technol. 60(2, Part 2), 1149–1154 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Yang, Q. Gong, Q. Wu, F. Li, Y. Lu, J. Shi, Alkaloids enriched extract from Dendrobium nobile Lindl. attenuates tau protein hyperphosphorylation and apoptosis induced by lipopolysaccharide in rat brain. Phytomedicine 21(5), 712–716 (2014)CrossRefGoogle Scholar
  3. 3.
    K. An, D. Zhao, Z. Wang, J. Wu, Y. Xu, G. Xiao, Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 197(Part B), 1292–1300 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Jiang, M. Zhang, B. Adhikari, Handbook of Food Powders, 1nd edn. (Elsevier, Cambridge, 2013). pp. 532–552CrossRefGoogle Scholar
  5. 5.
    S. Datta, A. Das, S. Basfore, T. Seth, Value Addition of Horticultural Crops: Recent Trends and Future Directions. 1nd edn. (Springer, New Delhi, 2015). pp. 179–189Google Scholar
  6. 6.
    I. Doymaz, Infrared drying characteristics of bean seeds. J. Food Process. Preserv. 39(6), 933–939 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Ming, L. Chen, H. Hong, J. Li, Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders. J. Sci. Food Agric. 95(12), 2431–2437 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Zheng, F. Zhang, J. Song, M. Lin, J. Kan, Effect of blanching and drying treatments on quality of bamboo shoot slices. Int. J. Food Sci. Tech. 49(2), 531–540 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Zhao, Z. Yang, G. Gai, Y. Yang, Effect of superfine grinding on properties of ginger powder. J. Food Eng. 91(2), 217–222 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Samoticha, A. Wojdyło, K. Lech, The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT-Food Sci. Technol. 66, 484–489 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Chin, C. Law, Maximizing the retention of ganoderic acids and water-soluble polysaccharides content of Ganoderma lucidum using two-stage dehydration method. Dry. Technol. 32(6), 644–656 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Meng, H. Fan, D. Xu, W. Aboshora, Y. Tang, T. Xiao, L. Zhang, Superfine grinding improves the bioaccessibility and antioxidant properties of Dendrobium officinale powders. Int. J. Food Sci. Technol. 52(6), 1440–1451 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Somman, N. Siwarungson, Comparison of antioxidant activity and tyrosinase inhibition in fresh and processed white radish, garlic and ginger. J. Food Meas. Charact. 9(3), 369–374 (2015)CrossRefGoogle Scholar
  14. 14.
    A.D. Assefa, R.K. Saini, Y.S. Keum, Extraction of antioxidants and flavonoids from yuzu (Citrus junos Sieb ex Tanaka) peels: a response surface methodology study. J. Food Meas. Charact. 11(2), 364–379 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Tohma, İ. Gülçin, E. Bursal, A.C. Gören, S.H. Alwasel, E. Köksal, Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 11(2), 556–566 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med 26(9–10), 1231–1237 (1999)CrossRefGoogle Scholar
  17. 17.
    Q.L. Luo, Z.H. Tang, X.F. Zhang, Y.H. Zhong, S.Z. Yao, L.S. Wang, C.W. Lin, X. Luo, Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol. 89, 219–227 (2016)CrossRefGoogle Scholar
  18. 18.
    X. Wang, X. Chen, Z. Qi, X. Liu, W. Li, S. Wang, A study of Ganoderma lucidum spores by FTIR microspectroscopy. Spectrochim. Acta A, 91, 285–289 (2012)CrossRefGoogle Scholar
  19. 19.
    M.H. Riadh, S.A.B. Ahmad, M.H. Marhaban, A.C. Soh, Infrared heating in food drying: an overview. Dry. Technol. 33(3), 322–335 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Zhou, Y. Wang, X. Hu, J. Wu, X. Liao, Effect of high pressure carbon dioxide on the quality of carrot juice. Innov. Food Sci. Emerg. 10(3), 321–327 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Gong, M. Zhang, J. Sun, Physico-chemical properties of cabbage powder as affected by drying methods. Dry. Technol. 25(5), 913–916 (2007)CrossRefGoogle Scholar
  22. 22.
    I. Scibisz, S. Kalisz, M. Mitek, Thermal degradation of anthocyanins in blueberry fruit. Zywn-Nauk. Technol. Ja. 17, 56–66 (2010)Google Scholar
  23. 23.
    C. Fagundes, K. Moraes, M.B. Pérez-Gago, L. Palou, M. Maraschin, A.R. Monteiro, Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol. Technol. 109, 73–81 (2015)CrossRefGoogle Scholar
  24. 24.
    K.O. Souza, R.M. Viana, L.S. Oliveira, C.F.H. Moura, M.R.A. Miranda, Preharvest treatment of growth regulators influences postharvest quality and storage life of cashew apples. Sci. Hortic-Amsterdam 209, 53–60 (2016)CrossRefGoogle Scholar
  25. 25.
    D.M. Beckles, Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63(1), 129–140 (2012)CrossRefGoogle Scholar
  26. 26.
    P.K. Busk, L. Lange, Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16(1), 368 (2015)CrossRefGoogle Scholar
  27. 27.
    D.K. Asami, Y.J. Hong, D.M. Barrett, A.E. Mitchell, Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agr. Food Chem. 51(5), 1237–1241 (2003)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Lim, J. Murtijaya, Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Technol. 40(9), 1664–1669 (2007)CrossRefGoogle Scholar
  29. 29.
    R.K. Toor, G.P. Savage, Effect of semi-drying on the antioxidant components of tomatoes. Food Chem. 94(1), 90–97 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Schieber, P. Keller, R. Carle, Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J. Chromatogr. A 910(2), 265–273 (2001)CrossRefGoogle Scholar
  31. 31.
    F. Hu, R. Lu, B. Huang, L. Ming, Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia 75(1), 14–23 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Kozarski, A. Klaus, M. Niksic, D. Jakovljevic, J.P.F.G. Helsper, L.J.L.D. Van Griensven, Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 129(4), 1667–1675 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Fan, X. He, S. Zhou, A. Luo, T. He, Z. Chun, Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. Int. J. Biol. Macromol. 45(2), 169–173 (2009)CrossRefGoogle Scholar
  34. 34.
    V. Samavati, A. Manoochehrizade, Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. Int. J. Biol. Macromol. 60, 427–436 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Wojdyło, J. Oszmiański, R. Czemerys, Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105(3), 940–949 (2007)CrossRefGoogle Scholar
  36. 36.
    A. Ghasemzadeh, H.Z.E. Jaafar, A. Rahmat, Variation of the phytochemical constituents and antioxidant activities of Zingiber officinale var. rubrum Theilade associated with different drying methods and polyphenol oxidase activity. Molecules 21(6), 780–791 (2016)CrossRefGoogle Scholar
  37. 37.
    X. Xing, S.W. Cui, S. Nie, G.O. Phillips, H. Douglas Goff, Q. Wang, A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioact. Carbohyd. Dietary Fibre, 1(2), 131–147 (2013)CrossRefGoogle Scholar
  38. 38.
    V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 50(10), 3010–3014 (2002)CrossRefGoogle Scholar
  39. 39.
    Y. Choi, S.M. Lee, J. Chun, H.B. Lee, J. Lee, Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 99(2), 381–387 (2006)CrossRefGoogle Scholar
  40. 40.
    K.S. Kang, N. Yamabe, H.Y. Kim, T. Okamoto, Y. Sei, T. Yokozawa, Increase in the free radical scavenging activities of American ginseng by heat processing and its safety evaluation. J. Ethnopharmacol. 113(2), 225–232 (2007)CrossRefGoogle Scholar
  41. 41.
    A. Tomaino, F. Cimino, V. Zimbalatti, V. Venuti, V. Sulfaro, A. De Pasquale, A. Saija, Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 89(4), 549–554 (2005)CrossRefGoogle Scholar
  42. 42.
    E. Capecka, A. Mareczek, M. Leja, Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem. 93(2), 223–226 (2005)CrossRefGoogle Scholar
  43. 43.
    M. Fu, Q. Qu, X. Yang, X. Zhang, Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT-Food Sci. Technol. 65, 1126–1132 (2016)CrossRefGoogle Scholar
  44. 44.
    R. Marfil, C. Cabrera-Vique, R. Giménez, P.R. Bouzas, O. Martínez, J.A. Sánchez, Metal content and physicochemical parameters used as quality criteria in virgin argan oil: influence of the extraction method. J. Agr. Food Chem. 56(16), 7279–7284 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  3. 3.National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
  4. 4.Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu ProvinceJiangnan UniversityWuxiChina

Personalised recommendations