Skip to main content
Log in

Electrical impedance spectroscopic study of mandarin orange during ripening

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Electrical impedance spectroscopy (EIS) as non-destructive investigation has been conducted to study the electrical impedance variations during ripening of mandarin orange. The objective of the work is to study the electrical impedance variations and variations in weight of the orange fruit with different ripening state. Electrical equivalent circuit has been modeled relative to the Nyquist plot obtained during the ripening of orange by non-linear curve fitting technique. EIS studies on orange fruit have been conducted by applying a small amount of alternating current through an array of Ag/AgCl electrodes attached to the orange fruit. The impedance and phase angles of orange fruit are measured at frequency sweep from 50 Hz to 1 MHz for 100 frequency points. The results revealed that the impedance, real part and imaginary part of the impedance all are increased and the weight of orange are decreased with the increase in ripening state. It is observed that the electrical equivalent circuit of orange fruit contains a constant phase element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.R. Macdonald, Impedance Spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  CAS  Google Scholar 

  2. J.R. Macdonald, W.B. Johnson, (2005). Fundamentals of impedance spectroscopy. Impedance spectroscopy: theory, experiment, and applications, Second Edition, 1–26

  3. A. Lasia, Electrochemical impedance spectroscopy and its applications. In Modern Aspects of Electrochemistry, (Springer, New York, 2002), pp. 143–248

    Chapter  Google Scholar 

  4. B.Y. Chang, S.M. Park, Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207–229 (2010)

    Article  CAS  Google Scholar 

  5. T.K. Bera, J. Nagaraju, Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J. Electr. Bioimpedance 2, 48–63 (2011). doi:10.5617/jeb.174

    Google Scholar 

  6. T.K. Bera, Y. Mohamadou, K.H. Lee, H. Wi, T.I. Oh, E.J. Woo, M. Soleimani, J.K. Seo, Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics. Sensors 14, 9738–9754 (2014)

    Article  Google Scholar 

  7. T.K. Bera, Bioelectrical impedance methods for noninvasive health monitoring: a review. J. Med. Eng. 2014(381251), 28 (2014). doi:10.1155/2014/381251

    Google Scholar 

  8. J. Santos, F.M. Janeiro, M.P. Ramos, Impedance frequency response measurements with multiharmonic stimulus and estimation algorithms in embedded systems. Measurement 48, 173–182 (2014)

    Article  Google Scholar 

  9. Patrick O. Moore, Michael W. Allgaier and Robert E. Cameron, Nondestructive Testing Handbook, Third Edition: 9, Visual Testing, The American Society for Non-destructive Testing, 2010

  10. Bera, T. K., Nagaraju, J., & Lubineau, G. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J Visualization 1–23. 2016.

  11. A. Keshtkar, Virtual bladder biopsy using bio-impedance spectroscopy at 62.500 Hz–1.024 MHz. Measurement 40(6), 585–590 (2007)

    Article  Google Scholar 

  12. P. Arpaia, F. Clemente, C. Romanucci, An instrument for prosthesis osseointegration assessment by electrochemical impedance spectrum measurement. Measurement 41(9), 1040–1044 (2008)

    Article  Google Scholar 

  13. P.M. Ramos, F.M. Janeiro, Gene expression programming for automatic circuit model identification in impedance spectroscopy: performance evaluation. Measurement 46(10), 4379–4387 (2013)

    Article  Google Scholar 

  14. B. Sanchez, E. Louarroudi, R. Pintelon, Time–frequency analysis of time-varying in vivo myocardial impedance. Measurement 56, 19–29 (2014)

    Article  Google Scholar 

  15. M. Min, O. Märtens, T. Parve, Lock-in measurement of bio-impedance variations. Measurement 27(1), 21–28 (2000)

    Article  Google Scholar 

  16. D. Bouchaala, O. Kanoun, N. Derbel, High accurate and wideband current excitation for bioimpedance health monitoring systems. Measurement 79, 339–348 (2015)

    Article  Google Scholar 

  17. M. Grossi, M. Lanzoni, R. Lazzarini, B. Riccò, Automatic ice-cream characterization by impedance measurements for optimal machine setting. Measurement 45(7), 1747–1754 (2012)

    Article  Google Scholar 

  18. J.M. Cruza, I.C. Fitaa, L. Sorianob, J. Payáb, M.V. Borracherob, The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cement Concr. Res. 50, 51–61 (2013)

    Article  Google Scholar 

  19. S.L. Zelinka, D.R. Rammer, D.S. Stone, Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content. Holzforschung 62, 737–744 (2008) Copyright © by Walter de Gruyter, Berlin, New York. doi:10.1515/HF.2008.115

    Article  CAS  Google Scholar 

  20. J. Hoja, G. Lentka, An analysis of a measurement probe for a high impedance spectroscopy analyzer. Measurement 41(1), 65–75 (2008)

    Article  Google Scholar 

  21. J. Huang, Z. Xu, S. Zhao, S. Li, X. Feng, P. Wang, Z. Zhang, Study on carrier mobility measurement using electroluminescence in frequency domain and electrochemical impedance spectroscopy. Measurement 43(3), 295–298 (2010)

    Article  Google Scholar 

  22. P.M. Gomadam, J.W. Weidnern, Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int. J. Energy Res. 29, 1133–1151 (2005)

    Article  CAS  Google Scholar 

  23. D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 66(3–4), 165–177 (2008)

    Article  CAS  Google Scholar 

  24. P. Héroux, M. Bourdages, Monitoring living tissues by electrical impedance spectroscopy. Ann. Biomed. Eng. 22(3), 328–337 (1994)

    Article  Google Scholar 

  25. A. Chowdhury, T.K. Bera, D. Ghoshal, B. Chakraborty, Studying the electrical impedance variations in banana ripening using electrical impedance spectroscopy (EIS). In Computer, Communication, Control and Information Technology (C3IT), 2015 Third International Conference on (pp. 1–4). IEEE (2015)

  26. F.R. Harker, J.H. Maindonald, Ripening of Nectarine Fruit. Plant Physiol. 106, 165–171 (1994)

    Article  CAS  Google Scholar 

  27. F.R. Harker, J. Dunlop, Electrical impedance studies of nectraines during coolstage and fruit ripening. Postharvest Biol. Technol. 4, 125–134 (1994)

    Article  Google Scholar 

  28. F.Roger Harker, ShelleyK. Forbes, ‘Ripening and development of chilling injury in persimmon fruit’, New Zealand. J. Crop Hortic. Sci. 25, 149–157 (1997)

    Article  Google Scholar 

  29. P.J. Jackson, F.R. Harker, Apple bruise detection by electrical impedance measurement. HortScience 35(1), 104–107 (2000)

    Google Scholar 

  30. P. Mészáros, Relationships between electrical parameters and physical properties of cereal grains, oilseeds, and apples. Budapest. (2007)

  31. A.D. Bauchot, F.R. Harker, W.M. Arnold, The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol. Technol. 18, 9–18 (2000)

    Article  Google Scholar 

  32. R.C. Bean, J.P. Rasor, G.G. Porter, Changes in electrical characteristics of avocados during ripening. California Avocado Soc. Yearbook 44, 75–78 (1960)

    Google Scholar 

  33. J. Juansah, I.W. Budhiastra, K. Dahlan, K.B. Seminnar, Electrical behavior of garut citrus fruits during ripening changes in resistance and capacitance models of internal fruits. IJET-IJENS 12(04), 1–8 (2012)

    Google Scholar 

  34. J. Juansah, I.W. Budhiastra, K. Dahlan, K.B. Seminnar, The prospect of electrical impedance spectroscopy as Non-destructive Evaluation of Citrus Fruits acidity. IJETAE 2(11), (2012)

  35. E. Vozáry, P. Benkő, Non-destructive determination of impedance spectrum of fruit flesh under the skin. J. Phys. 224, 012142 (2010)

    Google Scholar 

  36. M. Rehman, B.A.J.A. Abu Izneid, M.Z. Abdullah, M.R. Arshad, Assessment of quality of fruits using impedance spectroscopy. Int. J. Food Sci. Technol. 46, 1303–1309 (2011)

    Article  CAS  Google Scholar 

  37. R. Raj, N. Binoy C, Bio impedance spectroscopy for the assessment of quality of fruits by constructing the equivalent circuit. Int. J. Eng. Res. Technol. (IJERT) 2(11), (2013) ISSN: 2278-0181

  38. X. Liu, Electrical Impedance Spectroscopy Applied in Plant, Physiology Studies, in School of Electrical and Computer Engineering (RMIT University, Melbourne, 2006), p. 102

    Google Scholar 

  39. S. Zheng, An Investigation on Electrical Properties of Major Constituents of Grape Must under Fermentation Using Electrical Impedance Spectroscopy’ RMIT University August, 2009

  40. A.R. Varlan, W. Sansen,”Nondestructive electrical impedance analysis in fruit: normal ripening and injuries characterization”. Electro-Magnetobiology 15, 213–227 (1996)

    Article  Google Scholar 

  41. R.I. Hayden, C.A. Moyse, F.W. Calder, D.P. Crawford, D.S. Fensom, Electrical impedance studies on potato and alfalfa tissue. J. Exp. Bot. 20(63), 177–200 (1969)

    Article  Google Scholar 

  42. M.I.N. Zhang, J.H.M. Willison, Electrical impedance analysis in plant tissues: a double shell model. J. Exp. Bot. 42, 1465–1475 (1991)

    Article  Google Scholar 

  43. X. Liu, Q. Fang, S. Zheng, I. Cosic, P. Cao, Electrical impedance spectroscopy investigation on Cucumber Dehydration’ International Society for Horticulture Science Acta Horticulture 804: Europe-Asia Symposium on Quality Management in Postharvest Systems—Eurasia (2007)

  44. B.M.H. Larson, C. Spencer, H. Barrett, A comparative analysis of pollen limitation in flowering plants. Biol. J. Linnean Soc. 69, 503–520 (2000)

    Article  Google Scholar 

  45. Fresh Fruits and Vegetables Manual, A Report from The U.S. Department of Agriculture (USDA), ependence Avenue, SW., Washington, DC 20250-9410, Second Edition Issued 2012

  46. C.J. Brady, Fruit Ripening. Annu. Rev. Plant Physiol. 38, 155–178 (1987)

    Article  CAS  Google Scholar 

  47. N.A.M. Eskin (ed.), Quality and Preservation of Fruits (CRC Press, Boca Raton, FL, 1991), p. 212PP

    Google Scholar 

  48. J. Gross, Pigments in Fruits (Academic Press, Inc., Orlando, FL, 1987), p. 303PP

    Google Scholar 

  49. Fruit & Vegetable Nutrition Facts Chart, © 2004 Dole 5 A Expt-Day Program/Dole Food Company, Inc

  50. Fruits, Vegetables, and Health: a Scientific overview, 2011

  51. F.H. Netter, Atlas of Human Anatomy (Rittenhouse Book Distributors. Inc, Philadelphia, 1997)

    Google Scholar 

  52. M.C. Martí, D. Camejo, F. Vallejo, F. Romojaro, S. Bacarizo, J.M. Palma, Jiménez, A, (2011). Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars. Plant foods for human nutrition, 66(4), 416–423

  53. J.J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5 Hz to 1 MHz. Ann. Biomed. Eng. 21, 135–146 (1993)

    Article  CAS  Google Scholar 

  54. J.J. Ackmann, M.A. Seitz, Methods of complex impedance measurements in biologic tissue. Crit. Rev. Biomed. Eng. 11(4), 281–311 (1984)

    CAS  Google Scholar 

  55. K. Cha, G.M. Chertow, J. Gonzalez, J.M. Lazarus, D.W. Wilmore, Multifrequency bioelectrical impedance estimates the distribution of body water. J. Appl. Physiol. 79, 1316–1319 (1995)

    CAS  Google Scholar 

  56. H.P. Schwann, Electrical properties of tissue and cell suspensions: mechanisms and models. Proc. IEEE Adv. Biol. Med. Soc. 1, A70–A71 (2002)

    Google Scholar 

  57. S.M.M. Islam, M.A.R. Reza, M.A. Kiber, Development of multi-frequency electrical impedance spectroscopy (EIS) system for early detection of breast cancer. Int. J. Electron. Inform. 2(1), 26–32 (2013)

    Google Scholar 

  58. S. Ouitrakul, M. Sriyudthsak, S. Charojrochkul, T. Kakizono, Impedance analysis of bio-fuel cell electrodes. Biosens. Bioelectron. 23, 721–727 (2007)

    Article  CAS  Google Scholar 

  59. J.M. Ruiz, Sensor-Based Garments that Enable the Use of Bioimpedance Technology:Towards Personalized Healthcare Monitoring. Doctoral Thesis, Stockholm, Sweden, 2013

  60. B.K. Van Kreel, N. Cox-Reyven, P. Soeters, Determination of total body water by multifrequency bioelectric impedance: development of several models. Med. Biol. Eng. Comput. 36, 337–345 (1998)

    Article  Google Scholar 

  61. M. Ladanyia, M. Ladaniya, Citrus Fruit: Biology, Technology and Evaluation (Academic press, London, 2010)

    Google Scholar 

  62. S. Nagy, Vitamin C contents of citrus fruit and their products: a review. J. Agric. Food. Chem. 28(1), 8–18 (1980)

    Article  CAS  Google Scholar 

  63. C. Economos, W.D. Clay, Nutritional and health benefits of citrus fruits. Energy (kcal) 62(78), 37 (1999)

    Google Scholar 

  64. E.A. Baldwin, (1993). Citrus Fruit. In Biochemistry of Fruit Ripening (pp. 107–149). Springer Netherlands

  65. S.K. Lee, A.A. Kader, Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest biology and technology 20(3), 207–220 (2000)

    Article  CAS  Google Scholar 

  66. D. Ramful, E. Tarnus, O.I. Aruoma, E. Bourdon, T. Bahorun, Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Res. Int. 44(7), 2088–2099 (2011)

    Article  CAS  Google Scholar 

  67. S.S. Hassan, M.A. El Fattah, M.T.M. Zaki,, (1975). Spectrophotometric determination of vitamin C in citrus fruits using peri-naphthindan-2, 3, 4-trione. Fresenius’ Zeitschrift für analytische Chemie, 277(5), 369–371

  68. J. Silalahi, Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 11(1), 79–84 (2002)

    Article  CAS  Google Scholar 

  69. M.J. Wargovich, Anticancer properties of fruits and vegetables. HortScience 35(4), 573–575 (2000)

    CAS  Google Scholar 

  70. T. Hirata, M. Fujii, K. Akita, N. Yanaka, K. Ogawa, M. Kuroyanagi, D. Hongo, Identification and physiological evaluation of the components from Citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorg. Med. Chem. 17(1), 25–28 (2009)

    Article  CAS  Google Scholar 

  71. J.W. Eckert, I.L. Eaks, Postharvest disorders and diseases of citrus fruits. Citrus Ind. 5, 179–260 (1989)

    Google Scholar 

  72. A.A. Kader, Fruit maturity, ripening, and quality relationships. In International Symposium Effect of Pre-& Postharvest factors in Fruit Storage 485 pp. 203–208 (1997)

  73. K.K. Singh, B.S. Reddy, Post-harvest physico-mechanical properties of orange peel and fruit. Journal of food engineering 73(2), 112–120 (2006)

    Article  Google Scholar 

  74. Internet Article, Inside an Orange, http://www.citrusbr.com/en/orangejuice/?ins=03, Retrived on 04 April 2016

  75. Y. Froelicher, D. Dambier, J.B. Bassene, G. Costantino, S. Lotfy, C. Didout, P. Ollitrault, Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol. Ecol. Resour. 8(1), 119–122 (2008)

    Article  CAS  Google Scholar 

  76. K. Dorji, C. Yapwattanaphun, Assessment of the genetic variability amongst mandarin (Citrus reticulata Blanco) accessions in Bhutan using AFLP markers. BMC Genet. 16(1), 1 (2015)

    Article  CAS  Google Scholar 

  77. X. Zhang, A.P. Breksa, D.O. Mishchuk, C.E. Fake, M.A. O’Mahony, C.M. Slupsky, Fertilisation and pesticides affect mandarin orange nutrient composition. Food Chem. 134(2), 1020–1024 (2012)

    Article  CAS  Google Scholar 

  78. R.W. Hodgson, Horticultural varieties of citrus. Division of Agricultural Sciences (1967)

  79. Internet Article, Citrus Pages, http://citruspages.free.fr/mandarins.html#classification. Retrived on 20 August 2015

  80. Mandarinorange Internet Article, https://en.wikipedia.org/wiki/Mandarin_orange. Retrived on 20 August 2015

  81. Internet Article, Market Watch: The wild and elusive Dancy”. David Karp, LA Times. http://www.latimes.com/food/la-fo-marketwatch-20110128-story.html. Retrived on 20 August 2015

  82. Internet Article, International Citrus Genomics Consortium, http://www.citrusgenome.ucr.edu/. Retrived on 20 August 2015

  83. N. Miyazawa, A. Fujita, K. Kubota, Aroma character impact compounds in Kinokuni mandarin orange (Citrus kinokuni) compared with Satsuma mandarin orange (Citrus unshiu). Biosci. Biotechnol. Biochem. 74(4), 835–842 (2010)

    Article  CAS  Google Scholar 

  84. E. Iwata, H. Hotta, M. Goto, Hypolipidemic and bifidogenic potentials in the dietary fiber prepared from Mikan (Japanese mandarin orange: Citrus unshiu) albedo. J. Nutr. Sci. Vitaminol. 58(3), 175–180 (2012)

    Article  CAS  Google Scholar 

  85. J. Wang, H. Hao, R. Liu, Q. Ma, J. Xu, F. Chen, X. Deng, Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and ‘Newhall’navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chem. 153, 177–185 (2014)

    Article  CAS  Google Scholar 

  86. T.K. Bera, J. Nagaraju, Electrical impedance spectroscopic studies on broiler chicken tissue suitable for the development of practical phantoms in multifrequency EIT. J. Electr. Bioimpedance 2(1), 48–63 (2011)

    Google Scholar 

  87. K.S. Cole, Permeability and impermeability of cell membranes for ions. Quant. Biol. 8, 110–122 (1940)

    Article  CAS  Google Scholar 

  88. T. Yamamoto, Y. Yamamoto, Analysis for the change of skin impedance. Med. Biol. Eng. Comput. 15(3), 219–227 (1977)

    Article  CAS  Google Scholar 

  89. P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Electroanal. Chem. 443, 149–154 (1998)

    Article  CAS  Google Scholar 

  90. M.I.N. Zhang, D.G. Stout, J.H.M. Willison, Plant tissue impedance and cold acclimation: a re-analysis. J. Exp. Bot. 43, 263–266 (1992)

    Article  Google Scholar 

  91. L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J. Food Eng. 87, 274–280 (2008)

    Article  Google Scholar 

  92. M. Itagaki, A. Taya, K. Watanabe, K. Noda, Deviations of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode. Anal. Sci. 18, 641–644 (2002)

    Article  CAS  Google Scholar 

  93. S. Skale, V. Dolecˇek, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corros. Sci. 49, 1045–1055 (2007)

    Article  CAS  Google Scholar 

  94. S. Ricciardi, J.C. Ruiz-Morales, P. Nunez, Origin and quantitative analysis of the constant phase element of a platinum SOFC cathode using the state-space model. Solid State Ionics 180, 1083–1090 (2009)

    Article  CAS  Google Scholar 

  95. Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J.Food Eng. 121, 24–31 (2014)

    Article  Google Scholar 

  96. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musianid, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. J. Electrochem. Soc. 157 _12_ C452-C457 _2010_0013-4651/2010/157_12_/C452/6/$28.00 © The Electrochemical Society

  97. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films I. Theory. J. Electrochem. Soc. 157(12), C452–C457 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge the NIT Agartala (NITA), Tripura, India for providing the research facilities to conduct and complete the research work. All authors also acknowledge the BMS College of Engineering, Bangalore, India and the Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badal Chakraborty.

Ethics declarations

Conflict of interest

There is no conflict of interest for this research work presented in this manuscript.

Additional information

Practical applications (EIS studies conducted on the mandarin orange ripening analyze the orange ripening process in terms of its bioimpedance variations and construct the equivalent circuit. EIS studies conducted on the mandarin oranges establishes the relationship between the bioimpedance variation and ripening states which can be potentially utilized to noninvasively study the orange ripening. It is observed that the results obtained from the EIS studies also indicate that the orange impedance gradually increases and the weight gradually decreases with the ripening time. Conducting an electrical impedance spectroscopic studies on orange we can analyze the ripening stages and predict the suitable ripening state with desirable taste, quality and food content for mandarin oranges noninvasively. Thus EIS studies on the mandarin orange ripening not only help us to the optimum ripening state of orange but also it will help the researchers to analyze its physiological changes, taste, and nutrient levels).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, A., Singh, P., Bera, T.K. et al. Electrical impedance spectroscopic study of mandarin orange during ripening. Food Measure 11, 1654–1664 (2017). https://doi.org/10.1007/s11694-017-9545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9545-y

Keywords

Navigation