Journal of Food Measurement and Characterization

, Volume 11, Issue 4, pp 1654–1664 | Cite as

Electrical impedance spectroscopic study of mandarin orange during ripening

  • Atanu Chowdhury
  • P. Singh
  • Tushar Kanti Bera
  • D. Ghoshal
  • Badal ChakrabortyEmail author
Original Paper


Electrical impedance spectroscopy (EIS) as non-destructive investigation has been conducted to study the electrical impedance variations during ripening of mandarin orange. The objective of the work is to study the electrical impedance variations and variations in weight of the orange fruit with different ripening state. Electrical equivalent circuit has been modeled relative to the Nyquist plot obtained during the ripening of orange by non-linear curve fitting technique. EIS studies on orange fruit have been conducted by applying a small amount of alternating current through an array of Ag/AgCl electrodes attached to the orange fruit. The impedance and phase angles of orange fruit are measured at frequency sweep from 50 Hz to 1 MHz for 100 frequency points. The results revealed that the impedance, real part and imaginary part of the impedance all are increased and the weight of orange are decreased with the increase in ripening state. It is observed that the electrical equivalent circuit of orange fruit contains a constant phase element.


Orange fruit Mandarin orange ripening electrical impedance spectroscopy (EIS) Impedance variation Nyquist plots Equivalent circuit model 



All the authors acknowledge the NIT Agartala (NITA), Tripura, India for providing the research facilities to conduct and complete the research work. All authors also acknowledge the BMS College of Engineering, Bangalore, India and the Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, West Bengal, India.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest for this research work presented in this manuscript.


  1. 1.
    J.R. Macdonald, Impedance Spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992)CrossRefGoogle Scholar
  2. 2.
    J.R. Macdonald, W.B. Johnson, (2005). Fundamentals of impedance spectroscopy. Impedance spectroscopy: theory, experiment, and applications, Second Edition, 1–26Google Scholar
  3. 3.
    A. Lasia, Electrochemical impedance spectroscopy and its applications. In Modern Aspects of Electrochemistry, (Springer, New York, 2002), pp. 143–248CrossRefGoogle Scholar
  4. 4.
    B.Y. Chang, S.M. Park, Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207–229 (2010)CrossRefGoogle Scholar
  5. 5.
    T.K. Bera, J. Nagaraju, Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J. Electr. Bioimpedance 2, 48–63 (2011). doi: 10.5617/jeb.174 Google Scholar
  6. 6.
    T.K. Bera, Y. Mohamadou, K.H. Lee, H. Wi, T.I. Oh, E.J. Woo, M. Soleimani, J.K. Seo, Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics. Sensors 14, 9738–9754 (2014)CrossRefGoogle Scholar
  7. 7.
    T.K. Bera, Bioelectrical impedance methods for noninvasive health monitoring: a review. J. Med. Eng. 2014(381251), 28 (2014). doi: 10.1155/2014/381251 Google Scholar
  8. 8.
    J. Santos, F.M. Janeiro, M.P. Ramos, Impedance frequency response measurements with multiharmonic stimulus and estimation algorithms in embedded systems. Measurement 48, 173–182 (2014)CrossRefGoogle Scholar
  9. 9.
    Patrick O. Moore, Michael W. Allgaier and Robert E. Cameron, Nondestructive Testing Handbook, Third Edition: 9, Visual Testing, The American Society for Non-destructive Testing, 2010Google Scholar
  10. 10.
    Bera, T. K., Nagaraju, J., & Lubineau, G. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J Visualization 1–23. 2016.Google Scholar
  11. 11.
    A. Keshtkar, Virtual bladder biopsy using bio-impedance spectroscopy at 62.500 Hz–1.024 MHz. Measurement 40(6), 585–590 (2007)CrossRefGoogle Scholar
  12. 12.
    P. Arpaia, F. Clemente, C. Romanucci, An instrument for prosthesis osseointegration assessment by electrochemical impedance spectrum measurement. Measurement 41(9), 1040–1044 (2008)CrossRefGoogle Scholar
  13. 13.
    P.M. Ramos, F.M. Janeiro, Gene expression programming for automatic circuit model identification in impedance spectroscopy: performance evaluation. Measurement 46(10), 4379–4387 (2013)CrossRefGoogle Scholar
  14. 14.
    B. Sanchez, E. Louarroudi, R. Pintelon, Time–frequency analysis of time-varying in vivo myocardial impedance. Measurement 56, 19–29 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Min, O. Märtens, T. Parve, Lock-in measurement of bio-impedance variations. Measurement 27(1), 21–28 (2000)CrossRefGoogle Scholar
  16. 16.
    D. Bouchaala, O. Kanoun, N. Derbel, High accurate and wideband current excitation for bioimpedance health monitoring systems. Measurement 79, 339–348 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Grossi, M. Lanzoni, R. Lazzarini, B. Riccò, Automatic ice-cream characterization by impedance measurements for optimal machine setting. Measurement 45(7), 1747–1754 (2012)CrossRefGoogle Scholar
  18. 18.
    J.M. Cruza, I.C. Fitaa, L. Sorianob, J. Payáb, M.V. Borracherob, The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cement Concr. Res. 50, 51–61 (2013)CrossRefGoogle Scholar
  19. 19.
    S.L. Zelinka, D.R. Rammer, D.S. Stone, Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content. Holzforschung 62, 737–744 (2008) Copyright © by Walter de Gruyter, Berlin, New York. doi: 10.1515/HF.2008.115 CrossRefGoogle Scholar
  20. 20.
    J. Hoja, G. Lentka, An analysis of a measurement probe for a high impedance spectroscopy analyzer. Measurement 41(1), 65–75 (2008)CrossRefGoogle Scholar
  21. 21.
    J. Huang, Z. Xu, S. Zhao, S. Li, X. Feng, P. Wang, Z. Zhang, Study on carrier mobility measurement using electroluminescence in frequency domain and electrochemical impedance spectroscopy. Measurement 43(3), 295–298 (2010)CrossRefGoogle Scholar
  22. 22.
    P.M. Gomadam, J.W. Weidnern, Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int. J. Energy Res. 29, 1133–1151 (2005)CrossRefGoogle Scholar
  23. 23.
    D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 66(3–4), 165–177 (2008)CrossRefGoogle Scholar
  24. 24.
    P. Héroux, M. Bourdages, Monitoring living tissues by electrical impedance spectroscopy. Ann. Biomed. Eng. 22(3), 328–337 (1994)CrossRefGoogle Scholar
  25. 25.
    A. Chowdhury, T.K. Bera, D. Ghoshal, B. Chakraborty, Studying the electrical impedance variations in banana ripening using electrical impedance spectroscopy (EIS). In Computer, Communication, Control and Information Technology (C3IT), 2015 Third International Conference on (pp. 1–4). IEEE (2015)Google Scholar
  26. 26.
    F.R. Harker, J.H. Maindonald, Ripening of Nectarine Fruit. Plant Physiol. 106, 165–171 (1994)CrossRefGoogle Scholar
  27. 27.
    F.R. Harker, J. Dunlop, Electrical impedance studies of nectraines during coolstage and fruit ripening. Postharvest Biol. Technol. 4, 125–134 (1994)CrossRefGoogle Scholar
  28. 28.
    F.Roger Harker, ShelleyK. Forbes, ‘Ripening and development of chilling injury in persimmon fruit’, New Zealand. J. Crop Hortic. Sci. 25, 149–157 (1997)CrossRefGoogle Scholar
  29. 29.
    P.J. Jackson, F.R. Harker, Apple bruise detection by electrical impedance measurement. HortScience 35(1), 104–107 (2000)Google Scholar
  30. 30.
    P. Mészáros, Relationships between electrical parameters and physical properties of cereal grains, oilseeds, and apples. Budapest. (2007)Google Scholar
  31. 31.
    A.D. Bauchot, F.R. Harker, W.M. Arnold, The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biol. Technol. 18, 9–18 (2000)CrossRefGoogle Scholar
  32. 32.
    R.C. Bean, J.P. Rasor, G.G. Porter, Changes in electrical characteristics of avocados during ripening. California Avocado Soc. Yearbook 44, 75–78 (1960)Google Scholar
  33. 33.
    J. Juansah, I.W. Budhiastra, K. Dahlan, K.B. Seminnar, Electrical behavior of garut citrus fruits during ripening changes in resistance and capacitance models of internal fruits. IJET-IJENS 12(04), 1–8 (2012)Google Scholar
  34. 34.
    J. Juansah, I.W. Budhiastra, K. Dahlan, K.B. Seminnar, The prospect of electrical impedance spectroscopy as Non-destructive Evaluation of Citrus Fruits acidity. IJETAE 2(11), (2012)Google Scholar
  35. 35.
    E. Vozáry, P. Benkő, Non-destructive determination of impedance spectrum of fruit flesh under the skin. J. Phys. 224, 012142 (2010)Google Scholar
  36. 36.
    M. Rehman, B.A.J.A. Abu Izneid, M.Z. Abdullah, M.R. Arshad, Assessment of quality of fruits using impedance spectroscopy. Int. J. Food Sci. Technol. 46, 1303–1309 (2011)CrossRefGoogle Scholar
  37. 37.
    R. Raj, N. Binoy C, Bio impedance spectroscopy for the assessment of quality of fruits by constructing the equivalent circuit. Int. J. Eng. Res. Technol. (IJERT) 2(11), (2013) ISSN: 2278-0181Google Scholar
  38. 38.
    X. Liu, Electrical Impedance Spectroscopy Applied in Plant, Physiology Studies, in School of Electrical and Computer Engineering (RMIT University, Melbourne, 2006), p. 102Google Scholar
  39. 39.
    S. Zheng, An Investigation on Electrical Properties of Major Constituents of Grape Must under Fermentation Using Electrical Impedance Spectroscopy’ RMIT University August, 2009Google Scholar
  40. 40.
    A.R. Varlan, W. Sansen,”Nondestructive electrical impedance analysis in fruit: normal ripening and injuries characterization”. Electro-Magnetobiology 15, 213–227 (1996)CrossRefGoogle Scholar
  41. 41.
    R.I. Hayden, C.A. Moyse, F.W. Calder, D.P. Crawford, D.S. Fensom, Electrical impedance studies on potato and alfalfa tissue. J. Exp. Bot. 20(63), 177–200 (1969)CrossRefGoogle Scholar
  42. 42.
    M.I.N. Zhang, J.H.M. Willison, Electrical impedance analysis in plant tissues: a double shell model. J. Exp. Bot. 42, 1465–1475 (1991)CrossRefGoogle Scholar
  43. 43.
    X. Liu, Q. Fang, S. Zheng, I. Cosic, P. Cao, Electrical impedance spectroscopy investigation on Cucumber Dehydration’ International Society for Horticulture Science Acta Horticulture 804: Europe-Asia Symposium on Quality Management in Postharvest Systems—Eurasia (2007)Google Scholar
  44. 44.
    B.M.H. Larson, C. Spencer, H. Barrett, A comparative analysis of pollen limitation in flowering plants. Biol. J. Linnean Soc. 69, 503–520 (2000)CrossRefGoogle Scholar
  45. 45.
    Fresh Fruits and Vegetables Manual, A Report from The U.S. Department of Agriculture (USDA), ependence Avenue, SW., Washington, DC 20250-9410, Second Edition Issued 2012Google Scholar
  46. 46.
    C.J. Brady, Fruit Ripening. Annu. Rev. Plant Physiol. 38, 155–178 (1987)CrossRefGoogle Scholar
  47. 47.
    N.A.M. Eskin (ed.), Quality and Preservation of Fruits (CRC Press, Boca Raton, FL, 1991), p. 212PPGoogle Scholar
  48. 48.
    J. Gross, Pigments in Fruits (Academic Press, Inc., Orlando, FL, 1987), p. 303PPGoogle Scholar
  49. 49.
    Fruit & Vegetable Nutrition Facts Chart, © 2004 Dole 5 A Expt-Day Program/Dole Food Company, IncGoogle Scholar
  50. 50.
    Fruits, Vegetables, and Health: a Scientific overview, 2011Google Scholar
  51. 51.
    F.H. Netter, Atlas of Human Anatomy (Rittenhouse Book Distributors. Inc, Philadelphia, 1997)Google Scholar
  52. 52.
    M.C. Martí, D. Camejo, F. Vallejo, F. Romojaro, S. Bacarizo, J.M. Palma, Jiménez, A, (2011). Influence of fruit ripening stage and harvest period on the antioxidant content of sweet pepper cultivars. Plant foods for human nutrition, 66(4), 416–423Google Scholar
  53. 53.
    J.J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5 Hz to 1 MHz. Ann. Biomed. Eng. 21, 135–146 (1993)CrossRefGoogle Scholar
  54. 54.
    J.J. Ackmann, M.A. Seitz, Methods of complex impedance measurements in biologic tissue. Crit. Rev. Biomed. Eng. 11(4), 281–311 (1984)Google Scholar
  55. 55.
    K. Cha, G.M. Chertow, J. Gonzalez, J.M. Lazarus, D.W. Wilmore, Multifrequency bioelectrical impedance estimates the distribution of body water. J. Appl. Physiol. 79, 1316–1319 (1995)Google Scholar
  56. 56.
    H.P. Schwann, Electrical properties of tissue and cell suspensions: mechanisms and models. Proc. IEEE Adv. Biol. Med. Soc. 1, A70–A71 (2002)Google Scholar
  57. 57.
    S.M.M. Islam, M.A.R. Reza, M.A. Kiber, Development of multi-frequency electrical impedance spectroscopy (EIS) system for early detection of breast cancer. Int. J. Electron. Inform. 2(1), 26–32 (2013)Google Scholar
  58. 58.
    S. Ouitrakul, M. Sriyudthsak, S. Charojrochkul, T. Kakizono, Impedance analysis of bio-fuel cell electrodes. Biosens. Bioelectron. 23, 721–727 (2007)CrossRefGoogle Scholar
  59. 59.
    J.M. Ruiz, Sensor-Based Garments that Enable the Use of Bioimpedance Technology:Towards Personalized Healthcare Monitoring. Doctoral Thesis, Stockholm, Sweden, 2013Google Scholar
  60. 60.
    B.K. Van Kreel, N. Cox-Reyven, P. Soeters, Determination of total body water by multifrequency bioelectric impedance: development of several models. Med. Biol. Eng. Comput. 36, 337–345 (1998)CrossRefGoogle Scholar
  61. 61.
    M. Ladanyia, M. Ladaniya, Citrus Fruit: Biology, Technology and Evaluation (Academic press, London, 2010)Google Scholar
  62. 62.
    S. Nagy, Vitamin C contents of citrus fruit and their products: a review. J. Agric. Food. Chem. 28(1), 8–18 (1980)CrossRefGoogle Scholar
  63. 63.
    C. Economos, W.D. Clay, Nutritional and health benefits of citrus fruits. Energy (kcal) 62(78), 37 (1999)Google Scholar
  64. 64.
    E.A. Baldwin, (1993). Citrus Fruit. In Biochemistry of Fruit Ripening (pp. 107–149). Springer NetherlandsGoogle Scholar
  65. 65.
    S.K. Lee, A.A. Kader, Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest biology and technology 20(3), 207–220 (2000)CrossRefGoogle Scholar
  66. 66.
    D. Ramful, E. Tarnus, O.I. Aruoma, E. Bourdon, T. Bahorun, Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Res. Int. 44(7), 2088–2099 (2011)CrossRefGoogle Scholar
  67. 67.
    S.S. Hassan, M.A. El Fattah, M.T.M. Zaki,, (1975). Spectrophotometric determination of vitamin C in citrus fruits using peri-naphthindan-2, 3, 4-trione. Fresenius’ Zeitschrift für analytische Chemie, 277(5), 369–371Google Scholar
  68. 68.
    J. Silalahi, Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 11(1), 79–84 (2002)CrossRefGoogle Scholar
  69. 69.
    M.J. Wargovich, Anticancer properties of fruits and vegetables. HortScience 35(4), 573–575 (2000)Google Scholar
  70. 70.
    T. Hirata, M. Fujii, K. Akita, N. Yanaka, K. Ogawa, M. Kuroyanagi, D. Hongo, Identification and physiological evaluation of the components from Citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorg. Med. Chem. 17(1), 25–28 (2009)CrossRefGoogle Scholar
  71. 71.
    J.W. Eckert, I.L. Eaks, Postharvest disorders and diseases of citrus fruits. Citrus Ind. 5, 179–260 (1989)Google Scholar
  72. 72.
    A.A. Kader, Fruit maturity, ripening, and quality relationships. In International Symposium Effect of Pre-& Postharvest factors in Fruit Storage 485 pp. 203–208 (1997)Google Scholar
  73. 73.
    K.K. Singh, B.S. Reddy, Post-harvest physico-mechanical properties of orange peel and fruit. Journal of food engineering 73(2), 112–120 (2006)CrossRefGoogle Scholar
  74. 74.
    Internet Article, Inside an Orange,, Retrived on 04 April 2016
  75. 75.
    Y. Froelicher, D. Dambier, J.B. Bassene, G. Costantino, S. Lotfy, C. Didout, P. Ollitrault, Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol. Ecol. Resour. 8(1), 119–122 (2008)CrossRefGoogle Scholar
  76. 76.
    K. Dorji, C. Yapwattanaphun, Assessment of the genetic variability amongst mandarin (Citrus reticulata Blanco) accessions in Bhutan using AFLP markers. BMC Genet. 16(1), 1 (2015)CrossRefGoogle Scholar
  77. 77.
    X. Zhang, A.P. Breksa, D.O. Mishchuk, C.E. Fake, M.A. O’Mahony, C.M. Slupsky, Fertilisation and pesticides affect mandarin orange nutrient composition. Food Chem. 134(2), 1020–1024 (2012)CrossRefGoogle Scholar
  78. 78.
    R.W. Hodgson, Horticultural varieties of citrus. Division of Agricultural Sciences (1967)Google Scholar
  79. 79.
    Internet Article, Citrus Pages, Retrived on 20 August 2015
  80. 80.
    Mandarinorange Internet Article, Retrived on 20 August 2015
  81. 81.
    Internet Article, Market Watch: The wild and elusive Dancy”. David Karp, LA Times. Retrived on 20 August 2015
  82. 82.
    Internet Article, International Citrus Genomics Consortium, Retrived on 20 August 2015
  83. 83.
    N. Miyazawa, A. Fujita, K. Kubota, Aroma character impact compounds in Kinokuni mandarin orange (Citrus kinokuni) compared with Satsuma mandarin orange (Citrus unshiu). Biosci. Biotechnol. Biochem. 74(4), 835–842 (2010)CrossRefGoogle Scholar
  84. 84.
    E. Iwata, H. Hotta, M. Goto, Hypolipidemic and bifidogenic potentials in the dietary fiber prepared from Mikan (Japanese mandarin orange: Citrus unshiu) albedo. J. Nutr. Sci. Vitaminol. 58(3), 175–180 (2012)CrossRefGoogle Scholar
  85. 85.
    J. Wang, H. Hao, R. Liu, Q. Ma, J. Xu, F. Chen, X. Deng, Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and ‘Newhall’navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chem. 153, 177–185 (2014)CrossRefGoogle Scholar
  86. 86.
    T.K. Bera, J. Nagaraju, Electrical impedance spectroscopic studies on broiler chicken tissue suitable for the development of practical phantoms in multifrequency EIT. J. Electr. Bioimpedance 2(1), 48–63 (2011)Google Scholar
  87. 87.
    K.S. Cole, Permeability and impermeability of cell membranes for ions. Quant. Biol. 8, 110–122 (1940)CrossRefGoogle Scholar
  88. 88.
    T. Yamamoto, Y. Yamamoto, Analysis for the change of skin impedance. Med. Biol. Eng. Comput. 15(3), 219–227 (1977)CrossRefGoogle Scholar
  89. 89.
    P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Electroanal. Chem. 443, 149–154 (1998)CrossRefGoogle Scholar
  90. 90.
    M.I.N. Zhang, D.G. Stout, J.H.M. Willison, Plant tissue impedance and cold acclimation: a re-analysis. J. Exp. Bot. 43, 263–266 (1992)CrossRefGoogle Scholar
  91. 91.
    L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J. Food Eng. 87, 274–280 (2008)CrossRefGoogle Scholar
  92. 92.
    M. Itagaki, A. Taya, K. Watanabe, K. Noda, Deviations of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode. Anal. Sci. 18, 641–644 (2002)CrossRefGoogle Scholar
  93. 93.
    S. Skale, V. Dolecˇek, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corros. Sci. 49, 1045–1055 (2007)CrossRefGoogle Scholar
  94. 94.
    S. Ricciardi, J.C. Ruiz-Morales, P. Nunez, Origin and quantitative analysis of the constant phase element of a platinum SOFC cathode using the state-space model. Solid State Ionics 180, 1083–1090 (2009)CrossRefGoogle Scholar
  95. 95.
    Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J.Food Eng. 121, 24–31 (2014)CrossRefGoogle Scholar
  96. 96.
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musianid, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. J. Electrochem. Soc. 157 _12_ C452-C457 _2010_0013-4651/2010/157_12_/C452/6/$28.00 © The Electrochemical SocietyGoogle Scholar
  97. 97.
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films I. Theory. J. Electrochem. Soc. 157(12), C452–C457 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Atanu Chowdhury
    • 1
  • P. Singh
    • 1
  • Tushar Kanti Bera
    • 2
  • D. Ghoshal
    • 1
  • Badal Chakraborty
    • 3
    Email author
  1. 1.Department of Electronics & Communication EngineeringN.I.T. AgartalaWest TripuraIndia
  2. 2.Department of Medical ElectronicsB.M.S. College of Engineering (B.M.S.C.E.)BangaloreIndia
  3. 3.Department of Post Harvest Engineering, Faculty of Agricultural EngineeringBidhan Chandra Krishi ViswavidyalayaNadiaIndia

Personalised recommendations