Advertisement

Journal of Food Measurement and Characterization

, Volume 11, Issue 4, pp 1559–1568 | Cite as

Assessment of antioxidant properties, instrumental and sensory aroma profile of red and white Karkade/Roselle (Hibiscus sabdariffa L.)

  • Haroon Elrasheid Tahir
  • Zou XiaoboEmail author
  • Abdalbasit Adam Mariod
  • Gustav Komla Mahunu
  • Mohammed A. Y. Abdualrahman
  • William Tchabo
Original Paper

Abstract

The antioxidant properties of the water extract of Hibiscus sabdariffa L. as well as their aroma profile were investigated. The samples analyzed were three red (Al-Rahad, Al-Fashir, Al-Gezira) and one white varieties. Total phenolic content, total flavonoid content, total anthocyanin content, ferric reducing antioxidant power and radical scavenging activity (RSA %) were measured spectrophotometrically. The red varieties of Karkade showed better overall antioxidant properties and aroma profile compared to the white variety. Conversely, the white H. sabdariffa might also be used in antioxidants applications, as its extract exhibited the highest RSA % compared to other varieties. Nineteen volatile compounds were detected in the H. sabdariffa extracts, including aldehydes, alcohols, ketones, esters and phenol. Partial least squares regression (PLSR) was applied to determine the relationship between sensory descriptors and instrumental data. PLSR result showed a good relationship between sensory analysis and instrumental data (t1 and t2 = 94.63%). This indicated that gas chromatography-mass spectrometry (GC/MS) can be used as suitable tools to predict the aroma quality of H. sabdariffa.

Keywords

Hibiscus sabdariffa L. Antioxidant Volatile compounds Descriptive sensory analysis PLSR 

Notes

Acknowledgements

We are grateful for the support from the department of the National Science and Technology Support Program (2015BAD17B04, 2015BAD19B03), the National Natural Science Foundation of China (Grant No. 61301239), China Postdoctoral Science Foundation (2013M540422, 2014T70483) and Science Foundation for Postdoctoral in Jiangsu Province (1301051C).

References

  1. 1.
    H.-H. Lin, et al., Chemopreventive properties of Hibiscus sabdariffa L. on human gastric carcinoma cells through apoptosis induction and JNK/p38 MAPK signaling activation. Chemico-biological interactions 165(1), 59–75 (2007)CrossRefGoogle Scholar
  2. 2.
    V. Hirunpanich et al., Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of Hibiscus sabdariffa L. in hypercholesterolemic rats. J. Ethnopharmacol. 103(2), 252–260 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Borrás-Linares et al., Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crops Prod. 69(0), 385–394 (2015)CrossRefGoogle Scholar
  4. 4.
    M.-C. Yin, C.-Y. Chao, Anti-campylobacter, anti-aerobic, and anti-oxidative effects of roselle calyx extract and protocatechuic acid in ground beef. Int. J. Food Microbiol. 127(1–2), 73–77 (2008)CrossRefGoogle Scholar
  5. 5.
    N. Mohd-Esa et al., Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food. Chem. 122(4), 1055–1060 (2010)CrossRefGoogle Scholar
  6. 6.
    E. Prenesti et al., Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food. Chem. 100(2), 433–438 (2007)CrossRefGoogle Scholar
  7. 7.
    K.R. Christian, J.C. Jackson, Changes in total phenolic and monomeric anthocyanin composition and antioxidant activity of three varieties of sorrel (Hibiscus sabdariffa) during maturity. J. Food Compos. Anal. 22(7–8), 663–667 (2009)CrossRefGoogle Scholar
  8. 8.
    T.H. Tseng et al., Induction of apoptosis by Hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem. Pharmacol. 60(3), 307–315 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Guardiola, N. Mach, Therapeutic potential of Hibiscus sabdariffa: a review of the scientific evidence. Endocrinología y Nutrición (English Edition) 61(5), 274–295 (2014)CrossRefGoogle Scholar
  10. 10.
    V. Prasongwatana et al., Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. J. Ethnopharmacol. 117(3), 491–495 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Gonzalez-Palomares et al., Effect of the temperature on the spray drying of Roselle extracts (Hibiscus sabdariffa L.). Plant Foods Hum. Nutr. 64(1), 62–67 (2009)CrossRefGoogle Scholar
  12. 12.
    M.M. Ramírez-Rodrigues et al., Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage. Food. Chem. 134(3), 1425–1431 (2012)CrossRefGoogle Scholar
  13. 13.
    S.-H. Chen et al., Extraction, analysis, and study on the volatiles in Roselle Tea. J. Agric. Food. Chem. 46(3), 1101–1105 (1998)CrossRefGoogle Scholar
  14. 14.
    J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food. Chem. 64(4), 555–559 (1999)CrossRefGoogle Scholar
  15. 15.
    H.E. Tahir et al., Comprehensive evaluation of antioxidant properties and volatile compounds of sudanese honeys. J. Food Biochem. 39(4), 349–359 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Lees, F. Francis, Standardization of pigment analyses in cranberries. HortScience 7, 83–84 (1972)Google Scholar
  17. 17.
    S. Saxena, S. Gautam, A. Sharma, Physical, biochemical and antioxidant properties of some Indian honeys. Food. Chem. 118(2), 391–397 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Cristina Soria, J. Sanz, I. Martinez-Castro, SPME followed by GC-MS, a powerful technique for qualitative analysis of honey volatiles. Eur. Food Res. Technol. 228(4), 579–590 (2009)CrossRefGoogle Scholar
  19. 19.
    F. Bianchi et al., Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Chem. 129(3), 1030–1036 (2011)CrossRefGoogle Scholar
  20. 20.
    B. Plutowska et al., A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food. Chem. 126(3), 1288–1298 (2011)CrossRefGoogle Scholar
  21. 21.
    N.S. Janzantti et al., Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. LWT-Food Sci. Technol. 46(2), 511–518 (2012)CrossRefGoogle Scholar
  22. 22.
    X. Wang et al., Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine. Food. Chem. 182(0), 41–46 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Castro-Vazquez et al., Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food. Chem. 112(4), 1022–1030 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Togari, A. Kobayashi, T. Aishima, Relating sensory properties of tea aroma to gas chromatographic data by chemometric calibration methods. Food Res. Int. 28(5), 485–493 (1995)CrossRefGoogle Scholar
  25. 25.
    C.Q. Wei et al., Comparison of volatile compounds of hot-pressed, cold-pressed and solvent-extracted flaxseed oils analyzed by SPME-GC/MS combined with electronic nose: major volatiles can be used asmarkers to distinguish differently processed oils. Eur. J. Lipid Sci. Technol. 117(3), 320–330 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Bechoff et al., Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks. Food Chem. 148, 112–119 (2014)CrossRefGoogle Scholar
  27. 27.
    P.-J. Tsai et al., Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res. Int. 35(4), 351–356 (2002)CrossRefGoogle Scholar
  28. 28.
    G. Camelo-Méndez et al., Comparative study of anthocyanin and volatile compounds content of four varieties of Mexican roselle (Hibiscus sabdariffa L.) by multivariable analysis. Plant Foods Hum. Nutr. 68(3), 229–234 (2013)CrossRefGoogle Scholar
  29. 29.
    H.A. Sindi, L.J. Marshall, M.R. Morgan, Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem. 164, 23–29 (2014)CrossRefGoogle Scholar
  30. 30.
    I. Umar et al., The effect of aqueous extracts of Hibiscus sabdariffa (Sorrel) calyces on heamatological profile and organ pathological changes in Trypanasoma congolense–infected rat. Afr. J. Tradit. Complement. Altern. Med. 6(4), 585–591 (2009)Google Scholar
  31. 31.
    H. Kamei et al., Suppression of tumor cell growth by anthocyanins in vitro. Cancer Investig. 13(6), 590–594 (1995)CrossRefGoogle Scholar
  32. 32.
    S. Meiers et al., The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agric. Food. Chem. 49(2), 958–962 (2001)CrossRefGoogle Scholar
  33. 33.
    B. Pool-Zobel et al., Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur. J. Nutr. 38(5), 227–234 (1999)CrossRefGoogle Scholar
  34. 34.
    T. Tsuda, Y. Kato, T. Osawa, Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Lett. 484(3), 207–210 (2000)CrossRefGoogle Scholar
  35. 35.
    S. de Pascual-Teresa, D.A. Moreno, C. García-Viguera, Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int. J. Mol. Sci. 11(4), 1679–1703 (2010)CrossRefGoogle Scholar
  36. 36.
    I. Da-Costa-Rocha et al., Hibiscus sabdariffa L.: a phytochemical and pharmacological review. Food. Chem. 165(0), 424–443 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Springob et al., Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20(3), 288–303 (2003)CrossRefGoogle Scholar
  38. 38.
    J. Wang et al., Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Molecules 19(12), 21226 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 89(3), 217–233 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Babalola, A. Babalola, O. Aworh, Compositional attributes of the calyces of roselle (Hibiscus sabdariffa L.). J. Food Technol. Afr. 6, 133–134 (2001)Google Scholar
  41. 41.
    A.M. Suliman et al., A comparative study on red and white karkade (Hibiscus sabdariffa L.) calyces, extracts and their products. Pak. J. Nutr. 10(7), 680–683 (2011)CrossRefGoogle Scholar
  42. 42.
    E.N. Frankel et al., Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J. Agric. Food. Chem. 46(3), 834–838 (1998)CrossRefGoogle Scholar
  43. 43.
    S. Fernández-Arroyo et al., Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res. Int. 44(5), 1490–1495 (2011)CrossRefGoogle Scholar
  44. 44.
    S.G. Sáyago-Ayerdi et al., Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. J. Agric. Food Chem. 55(19), 7886–7890 (2007)CrossRefGoogle Scholar
  45. 45.
    E. Jung, Y. Kim, N. Joo, Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.). J. Sci. Food Agric. 93(15), 3769–3776 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Ramírez-Rodrigues et al., Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried. J. Food Sci. 76(2), C212–C217 (2011)CrossRefGoogle Scholar
  47. 47.
    C. Schuh, P. Schieberle, Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J. Agric. Food. Chem. 54(3), 916–924 (2006)CrossRefGoogle Scholar
  48. 48.
    T. Shibamoto, C.S. Tang, ‘Minor’ tropical fruits–mango, papaya, passion fruit, and guava. in Developments in food science (1990), pp 221–280Google Scholar
  49. 49.
    L. Vazquez-Araujo et al., Instrumental and sensory aroma profile of pomegranate juices from the USA: differences between fresh and commercial juice. Flavour Fragr. J. 26(2), 129–138 (2011)CrossRefGoogle Scholar
  50. 50.
    T. Acree, H. Arn, Flavornet and human odor space. Datu Inc. (2004), http://www.flavornet.org. Accessed 20 Mar 2013
  51. 51.
    M.J. Jordan et al., Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by GC-MS and multidimensional GC/GC-O. J. Agric. Food. Chem. 50(19), 5386–5390 (2002)CrossRefGoogle Scholar
  52. 52.
    A.J. Matich et al., Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry 63(3), 285–301 (2003)CrossRefGoogle Scholar
  53. 53.
    E. Lewinsohn et al., Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agric. Food. Chem. 53(8), 3142–3148 (2005)CrossRefGoogle Scholar
  54. 54.
    M. Aznar et al., Prediction of aged red wine aroma properties from aroma chemical composition: partial least squares regression models. J. Agric. Food. Chem. 51(9), 2700–2707 (2003)CrossRefGoogle Scholar
  55. 55.
    M. Vilanova et al., Correlation between volatile composition and sensory properties in Spanish Albarino wines. Microchem. J. 95(2), 240–246 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Haroon Elrasheid Tahir
    • 1
  • Zou Xiaobo
    • 1
    Email author
  • Abdalbasit Adam Mariod
    • 2
    • 3
  • Gustav Komla Mahunu
    • 4
  • Mohammed A. Y. Abdualrahman
    • 1
    • 5
  • William Tchabo
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
  2. 2.College of Sciences and Arts-AlkamilUniversity of JeddahAlkamilSaudi Arabia
  3. 3.Department of Food Science & Technology, College of Agricultural StudiesSudan University of Science & TechnologyKhartoum NorthSudan
  4. 4.Department of Food Science & Technology, Faculty of AgricultureUniversity for Development StudiesTamaleGhana
  5. 5.Department of Food TechnologyNyala Technical CollegeNyalaSudan

Personalised recommendations