Abstract
The antioxidant properties of the water extract of Hibiscus sabdariffa L. as well as their aroma profile were investigated. The samples analyzed were three red (Al-Rahad, Al-Fashir, Al-Gezira) and one white varieties. Total phenolic content, total flavonoid content, total anthocyanin content, ferric reducing antioxidant power and radical scavenging activity (RSA %) were measured spectrophotometrically. The red varieties of Karkade showed better overall antioxidant properties and aroma profile compared to the white variety. Conversely, the white H. sabdariffa might also be used in antioxidants applications, as its extract exhibited the highest RSA % compared to other varieties. Nineteen volatile compounds were detected in the H. sabdariffa extracts, including aldehydes, alcohols, ketones, esters and phenol. Partial least squares regression (PLSR) was applied to determine the relationship between sensory descriptors and instrumental data. PLSR result showed a good relationship between sensory analysis and instrumental data (t1 and t2 = 94.63%). This indicated that gas chromatography-mass spectrometry (GC/MS) can be used as suitable tools to predict the aroma quality of H. sabdariffa.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
H.-H. Lin, et al., Chemopreventive properties of Hibiscus sabdariffa L. on human gastric carcinoma cells through apoptosis induction and JNK/p38 MAPK signaling activation. Chemico-biological interactions 165(1), 59–75 (2007)
V. Hirunpanich et al., Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of Hibiscus sabdariffa L. in hypercholesterolemic rats. J. Ethnopharmacol. 103(2), 252–260 (2006)
I. Borrás-Linares et al., Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crops Prod. 69(0), 385–394 (2015)
M.-C. Yin, C.-Y. Chao, Anti-campylobacter, anti-aerobic, and anti-oxidative effects of roselle calyx extract and protocatechuic acid in ground beef. Int. J. Food Microbiol. 127(1–2), 73–77 (2008)
N. Mohd-Esa et al., Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food. Chem. 122(4), 1055–1060 (2010)
E. Prenesti et al., Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food. Chem. 100(2), 433–438 (2007)
K.R. Christian, J.C. Jackson, Changes in total phenolic and monomeric anthocyanin composition and antioxidant activity of three varieties of sorrel (Hibiscus sabdariffa) during maturity. J. Food Compos. Anal. 22(7–8), 663–667 (2009)
T.H. Tseng et al., Induction of apoptosis by Hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem. Pharmacol. 60(3), 307–315 (2000)
S. Guardiola, N. Mach, Therapeutic potential of Hibiscus sabdariffa: a review of the scientific evidence. Endocrinología y Nutrición (English Edition) 61(5), 274–295 (2014)
V. Prasongwatana et al., Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. J. Ethnopharmacol. 117(3), 491–495 (2008)
S. Gonzalez-Palomares et al., Effect of the temperature on the spray drying of Roselle extracts (Hibiscus sabdariffa L.). Plant Foods Hum. Nutr. 64(1), 62–67 (2009)
M.M. Ramírez-Rodrigues et al., Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage. Food. Chem. 134(3), 1425–1431 (2012)
S.-H. Chen et al., Extraction, analysis, and study on the volatiles in Roselle Tea. J. Agric. Food. Chem. 46(3), 1101–1105 (1998)
J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food. Chem. 64(4), 555–559 (1999)
H.E. Tahir et al., Comprehensive evaluation of antioxidant properties and volatile compounds of sudanese honeys. J. Food Biochem. 39(4), 349–359 (2015)
D. Lees, F. Francis, Standardization of pigment analyses in cranberries. HortScience 7, 83–84 (1972)
S. Saxena, S. Gautam, A. Sharma, Physical, biochemical and antioxidant properties of some Indian honeys. Food. Chem. 118(2), 391–397 (2010)
A. Cristina Soria, J. Sanz, I. Martinez-Castro, SPME followed by GC-MS, a powerful technique for qualitative analysis of honey volatiles. Eur. Food Res. Technol. 228(4), 579–590 (2009)
F. Bianchi et al., Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Chem. 129(3), 1030–1036 (2011)
B. Plutowska et al., A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food. Chem. 126(3), 1288–1298 (2011)
N.S. Janzantti et al., Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. LWT-Food Sci. Technol. 46(2), 511–518 (2012)
X. Wang et al., Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine. Food. Chem. 182(0), 41–46 (2015)
L. Castro-Vazquez et al., Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food. Chem. 112(4), 1022–1030 (2009)
N. Togari, A. Kobayashi, T. Aishima, Relating sensory properties of tea aroma to gas chromatographic data by chemometric calibration methods. Food Res. Int. 28(5), 485–493 (1995)
C.Q. Wei et al., Comparison of volatile compounds of hot-pressed, cold-pressed and solvent-extracted flaxseed oils analyzed by SPME-GC/MS combined with electronic nose: major volatiles can be used asmarkers to distinguish differently processed oils. Eur. J. Lipid Sci. Technol. 117(3), 320–330 (2015)
A. Bechoff et al., Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks. Food Chem. 148, 112–119 (2014)
P.-J. Tsai et al., Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res. Int. 35(4), 351–356 (2002)
G. Camelo-Méndez et al., Comparative study of anthocyanin and volatile compounds content of four varieties of Mexican roselle (Hibiscus sabdariffa L.) by multivariable analysis. Plant Foods Hum. Nutr. 68(3), 229–234 (2013)
H.A. Sindi, L.J. Marshall, M.R. Morgan, Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem. 164, 23–29 (2014)
I. Umar et al., The effect of aqueous extracts of Hibiscus sabdariffa (Sorrel) calyces on heamatological profile and organ pathological changes in Trypanasoma congolense–infected rat. Afr. J. Tradit. Complement. Altern. Med. 6(4), 585–591 (2009)
H. Kamei et al., Suppression of tumor cell growth by anthocyanins in vitro. Cancer Investig. 13(6), 590–594 (1995)
S. Meiers et al., The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agric. Food. Chem. 49(2), 958–962 (2001)
B. Pool-Zobel et al., Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur. J. Nutr. 38(5), 227–234 (1999)
T. Tsuda, Y. Kato, T. Osawa, Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Lett. 484(3), 207–210 (2000)
S. de Pascual-Teresa, D.A. Moreno, C. García-Viguera, Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int. J. Mol. Sci. 11(4), 1679–1703 (2010)
I. Da-Costa-Rocha et al., Hibiscus sabdariffa L.: a phytochemical and pharmacological review. Food. Chem. 165(0), 424–443 (2014)
K. Springob et al., Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20(3), 288–303 (2003)
J. Wang et al., Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Molecules 19(12), 21226 (2014)
D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 89(3), 217–233 (2011)
S. Babalola, A. Babalola, O. Aworh, Compositional attributes of the calyces of roselle (Hibiscus sabdariffa L.). J. Food Technol. Afr. 6, 133–134 (2001)
A.M. Suliman et al., A comparative study on red and white karkade (Hibiscus sabdariffa L.) calyces, extracts and their products. Pak. J. Nutr. 10(7), 680–683 (2011)
E.N. Frankel et al., Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J. Agric. Food. Chem. 46(3), 834–838 (1998)
S. Fernández-Arroyo et al., Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res. Int. 44(5), 1490–1495 (2011)
S.G. Sáyago-Ayerdi et al., Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. J. Agric. Food Chem. 55(19), 7886–7890 (2007)
E. Jung, Y. Kim, N. Joo, Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.). J. Sci. Food Agric. 93(15), 3769–3776 (2013)
M. Ramírez-Rodrigues et al., Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried. J. Food Sci. 76(2), C212–C217 (2011)
C. Schuh, P. Schieberle, Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J. Agric. Food. Chem. 54(3), 916–924 (2006)
T. Shibamoto, C.S. Tang, ‘Minor’ tropical fruits–mango, papaya, passion fruit, and guava. in Developments in food science (1990), pp 221–280
L. Vazquez-Araujo et al., Instrumental and sensory aroma profile of pomegranate juices from the USA: differences between fresh and commercial juice. Flavour Fragr. J. 26(2), 129–138 (2011)
T. Acree, H. Arn, Flavornet and human odor space. Datu Inc. (2004), http://www.flavornet.org. Accessed 20 Mar 2013
M.J. Jordan et al., Aroma active components in aqueous kiwi fruit essence and kiwi fruit puree by GC-MS and multidimensional GC/GC-O. J. Agric. Food. Chem. 50(19), 5386–5390 (2002)
A.J. Matich et al., Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry 63(3), 285–301 (2003)
E. Lewinsohn et al., Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agric. Food. Chem. 53(8), 3142–3148 (2005)
M. Aznar et al., Prediction of aged red wine aroma properties from aroma chemical composition: partial least squares regression models. J. Agric. Food. Chem. 51(9), 2700–2707 (2003)
M. Vilanova et al., Correlation between volatile composition and sensory properties in Spanish Albarino wines. Microchem. J. 95(2), 240–246 (2010)
Acknowledgements
We are grateful for the support from the department of the National Science and Technology Support Program (2015BAD17B04, 2015BAD19B03), the National Natural Science Foundation of China (Grant No. 61301239), China Postdoctoral Science Foundation (2013M540422, 2014T70483) and Science Foundation for Postdoctoral in Jiangsu Province (1301051C).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tahir, H.E., Xiaobo, Z., Mariod, A.A. et al. Assessment of antioxidant properties, instrumental and sensory aroma profile of red and white Karkade/Roselle (Hibiscus sabdariffa L.). Food Measure 11, 1559–1568 (2017). https://doi.org/10.1007/s11694-017-9535-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11694-017-9535-0


