Journal of Food Measurement and Characterization

, Volume 11, Issue 3, pp 1106–1117 | Cite as

Characterization of honeys by their botanical and geographical origins based on physico-chemical properties and chemo-metrics analysis

  • Nuru Adgaba
  • Ahmed A. Al-Ghamdi
  • Awraris Getachew
  • Yilma Tadesse
  • Abera Belay
  • Mohammed J. Ansari
  • Sarah E. Radloff
  • Deepak Sharma
Original Paper

Abstract

Honey, because of its nutritional and medicinal values, is in high demand and has become one of the important commodities. However, the issue of its quality and authenticity remain as important factors in consumption and marketing of honey. To assess the possibility of discriminating honeys by their geographical and botanical origins; 30 fresh honey samples of different botanical and geographical origins were collected and their major physico-chemical properties such as: total dissolved sugar (TDS), total ash, sugar profile, acidity, metallic ions and electric conductivity (EC) were investigated. The data was subjected to different chemo-metric (Hierarchical Cluster, Principal components and stepwise discriminant) analysis. Among the 23 characters used in the analysis; only 11 (TDS, EC, acidity, total ash, colour, and some specific metallic ions) characters have showed significant variations among different origin honeys. According to the stepwise discriminant analysis; 11 variables confirmed the grouping of the honey samples into four cluster groups based on their botanical and geographical origins. The clustering of the honeys associated with dominant plant source & climatic conditions of their origins. The study generally revealed the successful discrimination of honeys into their botanical and geographical provenances using fewer physico-chemical characters supported with melissopalynological data through applying suitable chemo-metric analysis.

Keywords

Honey characterization Authenticity Chemo-metric Physico-chemical properties Botanical origins Ethiopia 

Notes

Acknowledgements

The authors are grateful to the Deanship of Scientific Research and College of Food and Agricultural Science Research Center, King Saud University Riyadh, for providing financial and material supports this research.

References

  1. 1.
    P.C. Molan, A. Mizrahi, Y. Lensky, Honey as an antimicrobial agent. In A. Mizrahi & Y. Lensky (eds.), Bee products: properties, applications and apitherapy. (Plenum Press, New York, 1997), pp. 27–37 http://www.springer.com/gp/book/9780306455025
  2. 2.
    O.M. Herna´ndez, J.M.G. Fraga, A.I. Jime´nez, F. Jime´nez, J.J. Arias, Characterization of honey from the Canary Islands: determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 93, 449–458 (2004). doi:10.1016/j.foodchem.2004.10.036 CrossRefGoogle Scholar
  3. 3.
    J.F. Cotte, H. Casabianca, J. Lhéritier, C. Perrucchietti, C. Sanglar, H. Waton, Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2 H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey. Anal. Chim. Acta. 582, 125–136, http://www.sciencedirect.com/science/journal/00032670/582/1 (2007)
  4. 4.
    J. Wang, Q.X. Li, Chemical composition, characterization, and differentiation of honey botanical and geographical origins. Adv. Food Nutr. Res. 62, 89–137 (2011). doi:10.1016/B978-0-12-385989-1.00003-X CrossRefGoogle Scholar
  5. 5.
    E. Alissandrakis, P.A. Tarantilis, P.C. Harizanis, M. Polissiou, Comparison of the volatile composition in thyme honeys from several origins in Greece. J. Agric. Food Chem. 55, 8152–8157 (2007). doi:10.1021/jf071442y CrossRefGoogle Scholar
  6. 6.
    S. Serrano, M. Villarejo, R. Espejo, M. Jodral, Chemical and physical parameters of Andalusian honey: classification of citrus and eucalyptus honeys by discriminant analysis. Food Chem. 87, 619–625 (2004). 10.1016/j.foodchem.2004.01.031 CrossRefGoogle Scholar
  7. 7.
    O. L. Persano, M.G. Piazza, A.G. Sabatini, M. Accorti, Characterization of unifloral honeys. Apidologie 26, 453–465 (1995), https://hal.archives-ouvertes.fr/hal-00891311
  8. 8.
    P. Przybylowski, A. Wilczynska, Honey as an environmental marker. Food Chem. 74, 289–291 (2001). doi:10.1016/S0308-8146(01)00153-4 CrossRefGoogle Scholar
  9. 9.
    European Union, Council Directive 2001/EC relating to honey. Off. J. Eur. Communities L 10, 47–52 (2001), http://faolex.fao.org/docs/pdf/eur37441.pdf
  10. 10.
    M.V. Baroni, C. Arrua, M.L. Nores, P. Fayé, M.P. Díaz, G.A. Chiabrando, D.A. Wunderlin, Composition of honey from Córdoba (Argentina): assessment of North/South provenance by chemometrics. Food Chem 114, 727–733 (2009). doi:10.1016/j.foodchem.2008.10.018 CrossRefGoogle Scholar
  11. 11.
    E. Corbella, D. Cozzolino, Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometrics. LWT 39, 534–539 (2006). doi:10.1016/j.lwt.2005.03.011 CrossRefGoogle Scholar
  12. 12.
    O.A. Naab, M.A. Tamame, M.A. Caccavari, Palynological and physicochemical characteristics of three unifloral honey types from central Argentina. Span. J. Agric. Res. 6, 566–576 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Cimpoiu, A. Hosu, V. Miclaus, A. Puscas, Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta. A. 100, 149–154 (2013). doi:10.1016/j.saa.2012.04.008 CrossRefGoogle Scholar
  14. 14.
    G. Montenegro, M. Gómez, G. Casaubon, A. Belancic, A.M. Mujica, R.C. Peña, Analysis of volatile compounds in three unifloral native Chilean honeys. Int. J. Exp. Bot. 78, 61–65 (2009)Google Scholar
  15. 15.
    C.E. Manyi-Loh, R.N. Ndip, A.M. Clarke, Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 12, 9514–9532 (2011). doi:10.3390/ijms12129514 CrossRefGoogle Scholar
  16. 16.
    M. Juan-Borrás, E. Domenech, M. Hellebrandova, I. Escriche, Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res. Int. 60, 86–94, http://hdl.handle.net/10251/59309 (2014)
  17. 17.
    I. Escriche, M. Kadar, M. Juan-Borrás, E. Domenech, Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 142, 135–143 (2014). doi:10.1016/j.foodchem.2013.07.033 CrossRefGoogle Scholar
  18. 18.
    I. Sergiel, P. Pohl, M. Biesaga, A. Mironczyk, Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem. 145, 319–326 (2014)CrossRefGoogle Scholar
  19. 19.
    G.A. Nayik, V. Nanda, Characterization of the volatile profile of unifloral honey from Kashmir valley of India by using solid-phase microextraction and gas chromatography–mass spectrometry. Eur. Food Res. Technol. 240, 1091–1100 (2015). doi:10.1007/s00217-015-2413-2 CrossRefGoogle Scholar
  20. 20.
    F.A. Tomás-Barberán, I Martos, F. Ferreres, B.S. Radovic, E. Anklam, HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J. Sci. Food Agric. 81, 485–496 (2001). doi:10.1002/jsfa.836 CrossRefGoogle Scholar
  21. 21.
    L. Yaoa, N. Dattaa, F.A. Toma´s-Barbera´nb, F. Ferreresb, I. Martosb, R. Singanusongc, v Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chem. 81, 159–168 (2003)CrossRefGoogle Scholar
  22. 22.
    L. Yao, Y. Jiang, R. Singanusong, N. Datta, K. Raymont, Phenolic acids and abscisic acid in Australian Eucalyptus honeys and their potential for floral authentication. Food Chem. 86, 169–177 (2004). 10.1016/j.foodchem.2003.08.013 CrossRefGoogle Scholar
  23. 23.
    L. Yaoa, Y. Jiang, R. Singanusong, N. Datta, K. Raymont, Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication. Food Res. Int. 38, 651–658 (2005). doi:10.1016/j.foodres.2005.01.002 CrossRefGoogle Scholar
  24. 24.
    G.A. Nayik, B.N. Dar, V. Nanda, Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. (2016). doi:10.1016/j.arabjc.2015.08.017 Google Scholar
  25. 25.
    C. Chalhoub, P. Gotsiou, N. Lydakis-Simantiris, P. Kefalas, Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authentication. Crit. Rev. Food Sci. Nutr. 45, 193–203 (2005). doi:10.1080/10408690590956369 CrossRefGoogle Scholar
  26. 26.
    C.H. Latorre, R.M.P. Crecente, S.G. Martín, J.B. García, A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication. Food Chem. 141, 3559–3565 (2013). doi:10.1016/j.foodchem.2013.06.022 CrossRefGoogle Scholar
  27. 27.
    G.A. Nayik, V. Nanda, Physico-chemical, enzymatic, mineral and colour characterization of three different varieties of honeys from Kashmir valley of India with a multivariate approach. Pol. J. Food Nutr. Sci. 65, 101–108 (2015). doi:10.1515/pjfns-2015-0022 Google Scholar
  28. 28.
    G.A. Nayik, V. Nanda, A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different uni-floral honey types from Kashmir, India. LWT—Food Sci. Technol. 74, 504–513 (2016). doi:10.1016/j.lwt.2016.08.016 Google Scholar
  29. 29.
    E. Anklam, A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 63, 549–562 (1998). doi:10.1016/S0308-8146(98)00057-0 CrossRefGoogle Scholar
  30. 30.
    S. Ouchemoukh, H. Louaileche, P. Schweitzer, Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control 18, 52–58 (2007). doi:10.1016/j.foodcont.2005.08.007 CrossRefGoogle Scholar
  31. 31.
    G. Downey, K. Hussey, J.D. Kelly, T.F. Walshe, P.G. Martin, Preliminary contribution to the characterization of artisanal honey produced on the island of Ireland by palynological and physico-chemical data. Food Chem. 91, 347–354 (2005). doi:10.1016/j.foodchem.2004.06.020 CrossRefGoogle Scholar
  32. 32.
    E. C. Martin, Some aspects of hygroscopic properties and fermentation of honey. Bee World 39, 165–178 (1958). doi:10.1080/0005772X.1958.11095058 CrossRefGoogle Scholar
  33. 33.
    L.S. Chua, N.L. Abdul-Rahaman, M.R. Sarmidi, R. Aziz, Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chem. 135, 880–887 (2012). doi:10.1016/j.foodchem.2012.05.106 CrossRefGoogle Scholar
  34. 34.
    S. Bogdanov, K. Ruoff, O.L. Persano, Physico-chemical methods for the characterization of unifloral honeys: a review. Apidologie 35, S4–S17 (2004). doi:10.1051/apido:2004047 CrossRefGoogle Scholar
  35. 35.
    AOAC, Official methods of analysis. In K. Helrich (ed.) 15th edn. (Association of official Analytical Chemists, Inc., Arlington, 1990), https://archive.org/stream/gov.law.aoac.methods.1.1990/aoac.methods
  36. 36.
    International Honey Commission, Harmonized methods of the International honey commission, 2009, pp. 63, http://www.bee-hexagon.net/en/network.htm
  37. 37.
    M. Tuzen, M. Soylak, Trace heavy metal levels in microwave digested honey samples from middle Anatolia, Turkey. J. Food Drug Anal. 13, 343–347, http://www.fda.gov.tw/tc/includes/GetFile.ashx?mID=148&id=8299&chk=39c1a44e-f824-4a1f-a458- (2005)
  38. 38.
    J. Louveaux, A. Maurizio, G. Vorwohl, Methods of melissopalynology. Bee World 59, 139–157 (1978). doi:10.1080/0005772X.1978.11097714 CrossRefGoogle Scholar
  39. 39.
    A. Nuru, Atlas of pollen grains of major honeybee flora of Ethiopia. (Ethiopian Society of Animal production, Addis Ababa, Ethiopia, 2007) pp. 152Google Scholar
  40. 40.
    Codex Alimentarius Commission: “Revised Codex Standard for Honey Codex Stan 12-1981, Rev. 1 (1987), Rev. 2 (2001),” Codex Standard, 12, 1–7 (2001), http://teca.fao.org/sites/default/files/resources/Annex%20A%20Codex%20Alimentarius%20Honey%20Standard.pdf
  41. 41.
    S. Ouchemoukh, P. Schweitzer, M.B. Bey, H. Djoudad-Kadji, H. Louaileche, HPLC sugar profiles of Algerian honeys. Food Chem 121, 561–568 (2010). doi:10.1016/j.foodchem.2009.12.047 CrossRefGoogle Scholar
  42. 42.
    V. Kaškonienė, P.R. Venskutonis, V. Čeksterytė, Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT—Food Sci. Tech. 43, 801–807 (2010). doi:10.1016/j.lwt.2010.01.007 Google Scholar
  43. 43.
    G. Tadesse, B. Gebregziabher, Determination of quality and adulteration effects of honey from Adigrat and its surrounding areas. Int. J. Techno. Enhanc. Emerging Eng. Res. 2, 71–76, http://www.ijteee.org/final-print/oct2014/Determination-Of-Quality-And-Adulteration-Effects-Of-Honey (2014)
  44. 44.
    T. Eteraf-Oskouei, M. Najafi, Traditional and modern uses of natural honey in human diseases: a review. Iran J. Basic. Med. Sci. 16, 731–742, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758027/ (2013)
  45. 45.
    X. Feás, J. Pires, A. Iglesias, M.L. Estevinho, Characterization of artisanal honey produced on the Northwest of Portugal by melissopalynological and physico-chemical data. Food Chem. Toxicol. 48, 3462–3470 (2010). doi:10.1016/j.fct.2010.09.024 CrossRefGoogle Scholar
  46. 46.
    T. Joseph, A. Julius, F. Florence, D.N. Delphine, P. Jonnas, M.Z. Antoine, Physico-chemical and microbiological characteristics of honey from the sudano-guinean zone of West Cameroon. Afr. J. Biotech. 6, 908–913, http://www.academicjournals.org/AJB (2007)
  47. 47.
    J.L. Rodriguez-Otero, P. Paseiro, J. Simal, A. Cepeda, Mineral content of the honeys produced in Galicia (north-west Spain). Food Chem 49, 169–171 (1994). doi:10.1016/0308-8146(94)90154-6 CrossRefGoogle Scholar
  48. 48.
    N. Prica, M. Živkov-Baloš, S. Jakšić, Ž. Mihaljev, B. Kartalović, J. Babić, S. Savić, Moisture and acidity as indicators of the quality of honey originating from Vojvodina region. Arh Vet Med. 7, 99–109, http://niv.ns.ac.rs/wp-content/uploads/2014/12/Nadezda-Prica.pdf (2014)
  49. 49.
    M.J. Latorre, R. Peña, S. García, C. Herrero, Authentication of Galician (N.W. Spain) honeys by multivariate techniques based on metal content data. Analyst 125, 307–312 (2000). doi:10.1039/A905978D CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nuru Adgaba
    • 1
  • Ahmed A. Al-Ghamdi
    • 1
  • Awraris Getachew
    • 1
  • Yilma Tadesse
    • 1
  • Abera Belay
    • 3
  • Mohammed J. Ansari
    • 1
  • Sarah E. Radloff
    • 2
  • Deepak Sharma
    • 1
  1. 1.Bagshan Chair for Bee Research, Department of Plant Protection, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of StatisticsRhodes UniversityGrahamstownSouth Africa
  3. 3.Center for Food Science and Nutrition ProgramAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations