Determination of cyclamate by a cheap and simple spectrophotometric method

Abstract

In this work, a simple method based on anthocyanins degradation by nitrite ion was used to determine cyclamate in table-top sweeteners. The method was carried out in four steps: (1) cyclamate hydrolysis (hydrolysed cyclamate, HC); (2) reaction between HC and nitrous acid; (3) anthocyanins degradation by residual nitrous acid; and (4) Absorbance measurements at 515 nm. The anthocyanins degradation reaction was done at 20 and 60 °C with 3, 5, 7, 10, and 15 mgL−1 HNO2, and several reaction times were tested (15, 30, 45, 60, 90, and 120 min). Under the best conditions (60 °C, 10 mgL−1HNO2 and 45 min of reaction time) the calibration curve for cyclamate was linear in the range from 3.19 to 20 mgL−1; the relative standard deviation was 0.62% (for n = 5) and the limit of detection (LOD) was 0.96 mgL−1. The method was applied for determination of cyclamate in table-top sweeteners and the results were compared with the official method (AOAC 957.09). The effect of synergistic sweeteners (aspartame, acesulfame, sucralose, and saccharin) was also analysed. The results show that the proposed method: (1) reduces considerably the analysis time (from 26 to 2 h, approximately); (2) decreases the LOD and the sample amount is lesser; (3) uses less number of reagents which produces few residues; and (4) it is friendly with the environment, because the anthocyanins source is a plant and the residues can be considered as non-toxics. According with the analysis of synergistic sweetener sacesulfame-K and sucralose present interference; meanwhile aspartame and saccharin (the most used with cyclamate) have not interference in the determination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    F. Hunt, B.A. Bopp, P. Price, in Alternative Sweeteners, ed. by L. O’Brien Nabors (CRC Press, Florida, 2016), pp. 93–116

    Google Scholar 

  2. 2.

    Y. Ni, W. Xiao, S. Kokot, Food Chem. 113, 1339–1345 (2009)

    CAS  Article  Google Scholar 

  3. 3.

    Codex Alimentarius Commission, Thirty-third Session. (Geneva, 2010)

  4. 4.

    Codex Committee on Food Additives and Contaminants, Thirty-sixth session. (Rotterdam, 2003)

  5. 5.

    W.J. Spillane, in Advances in Sweeteners, ed. by T.H. Grenby (Chapman & Hall, Glasgow, 2012), pp. 6–24

    Google Scholar 

  6. 6.

    G.E. DuBois, in Sweeteners and Sugar Alternatives in Food Technology, ed. by K. O'Donnell, M.W. Kearsley (Wiley, Iowa, 2012), pp. 137–163

    Google Scholar 

  7. 7.

    M. Horie, F. Ishikawa, M. Oishi, T. Shindo, A. Yasui A, K. Ito. Chromatogr. 1154, 423–428 (2007)

    CAS  Article  Google Scholar 

  8. 8.

    S. Armenta, S. Garrigues, M. De la Guardia, Anal. Chim. Acta 521, 149–155 (2004)

    CAS  Article  Google Scholar 

  9. 9.

    A. Zygler, A. Wasik, A. Kot-Wasik, J. Namiésnik, Anal. Bioanal. Chem. 400, 2159–2172 (2011)

    CAS  Article  Google Scholar 

  10. 10.

    M. Hashemi, A. Habibi, N. Jahanshahi, Food Chem. 124, 1258–1263 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    F.R. Rocha, E. Ródenas-Torralba, Á. Morales-Rubio, M. De la Guardia, Anal. Chim. Acta 547, 204–208 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    N.E. Llamas, M.S. Di Nezio, M.E. Palomeque, B.S. Fernandez, Anal. Chim. Acta 539, 301–304 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    AOAC, Official Method 957.09 Cyclohexylsulphamate (Cyclamate) salts in Nonalcoholic Beverages, 17th edn. (AOAC, Maryland, 2000)

    Google Scholar 

  14. 14.

    A. Kinawi, H. Kia J. Clin. Chem. Clin. Biochem. 16, 365–369 (1978)

    CAS  Google Scholar 

  15. 15.

    L.A. Ramos, C.C. Schmitt, E.T. Gómez, É.T. Química Nova 29, 1114–1120 (2006)

  16. 16.

    A. Castañeda-Ovando, C.A. Galán-Vidal, J.A. Rodriguez, M.E. Páez-Hernández, E. Rangel-Vargas, in Innovations in Food Science and Food Biotechnology Developing Countries, ed. by C. Regalado, B.E. García-Almendárez (Asociación Mexicana de Ciencia de los Alimentos A.C., Mexico, 2010) pp. 26–47

    Google Scholar 

  17. 17.

    M.M. Giusti, R.E. Wrolstad, Curr. Protoc. Food Anal. Chem. F:F1:F1.2 (2001)

  18. 18.

    R. Wrolstad, R. Durst, J. Lee, Trends Food Sci. Tech. 16, 423–428 (2005)

    CAS  Article  Google Scholar 

  19. 19.

    C.A. Galan-Vidal, A. Castañeda-Ovando, M.E. Páez-Hernández, E. Contreras-López, J. Mex, Chem. Soc. 58, 180–184 (2014)

    CAS  Google Scholar 

  20. 20.

    J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 6th edn. (Pearson, Gosport, 2010), pp. 47–49

    Google Scholar 

  21. 21.

    Codex Committee on Food Additives and Contaminants. Forty-fourth session. Hangzhou, China, (2012)

  22. 22.

    B. Haber, G.W.R. Lipinski, S. Rathjen, in Sweeteners and Sugar Alternatives in Food Technology, ed. by H. Mitchell (Blackwell Publishing, Iowa, 2012), pp. 65–83

    Google Scholar 

  23. 23.

    D.L.H. Williams, Nitrosation reactions and the chemistry of nitric oxide, 1st edn. (Elsevier, Amsterdam, 2004), pp. 187–198

    Book  Google Scholar 

  24. 24.

    J.C. Fry, in Natural food additives, ingredients and flavourings, ed. by D. Baines, R. Seal (Woodhead Publishing Limited, Philadelphia, 2012), pp. 41–75

    Google Scholar 

Download references

Acknowledgements

K. A. A., E. C. L., L. G. G. O., J. J. O., J. A. M., and A. C. O. thank SNI (CONACyT) for the stipend received.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Araceli Castañeda-Ovando.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Arteaga, K., De Jesús-Fuentes, K.I., Contreras-López, E. et al. Determination of cyclamate by a cheap and simple spectrophotometric method. Food Measure 11, 879–886 (2017). https://doi.org/10.1007/s11694-016-9459-0

Download citation

Keywords

  • Determination
  • Sweeteners
  • Cyclamate
  • Anthocyanins
  • Nitrous acid
  • Degradation