Determination of cyclamate by a cheap and simple spectrophotometric method

  • Karina Aguilar-Arteaga
  • Karla I. De Jesús-Fuentes
  • Elizabeth Contreras-López
  • Javier Añorve-Morga
  • Araceli Castañeda-OvandoEmail author
  • Luis Guillermo González-Olivares
  • Judith Jaimez-Ordaz
Original Paper


In this work, a simple method based on anthocyanins degradation by nitrite ion was used to determine cyclamate in table-top sweeteners. The method was carried out in four steps: (1) cyclamate hydrolysis (hydrolysed cyclamate, HC); (2) reaction between HC and nitrous acid; (3) anthocyanins degradation by residual nitrous acid; and (4) Absorbance measurements at 515 nm. The anthocyanins degradation reaction was done at 20 and 60 °C with 3, 5, 7, 10, and 15 mgL−1 HNO2, and several reaction times were tested (15, 30, 45, 60, 90, and 120 min). Under the best conditions (60 °C, 10 mgL−1HNO2 and 45 min of reaction time) the calibration curve for cyclamate was linear in the range from 3.19 to 20 mgL−1; the relative standard deviation was 0.62% (for n = 5) and the limit of detection (LOD) was 0.96 mgL−1. The method was applied for determination of cyclamate in table-top sweeteners and the results were compared with the official method (AOAC 957.09). The effect of synergistic sweeteners (aspartame, acesulfame, sucralose, and saccharin) was also analysed. The results show that the proposed method: (1) reduces considerably the analysis time (from 26 to 2 h, approximately); (2) decreases the LOD and the sample amount is lesser; (3) uses less number of reagents which produces few residues; and (4) it is friendly with the environment, because the anthocyanins source is a plant and the residues can be considered as non-toxics. According with the analysis of synergistic sweetener sacesulfame-K and sucralose present interference; meanwhile aspartame and saccharin (the most used with cyclamate) have not interference in the determination.


Determination Sweeteners Cyclamate Anthocyanins Nitrous acid Degradation 



K. A. A., E. C. L., L. G. G. O., J. J. O., J. A. M., and A. C. O. thank SNI (CONACyT) for the stipend received.


  1. 1.
    F. Hunt, B.A. Bopp, P. Price, in Alternative Sweeteners, ed. by L. O’Brien Nabors (CRC Press, Florida, 2016), pp. 93–116Google Scholar
  2. 2.
    Y. Ni, W. Xiao, S. Kokot, Food Chem. 113, 1339–1345 (2009)CrossRefGoogle Scholar
  3. 3.
    Codex Alimentarius Commission, Thirty-third Session. (Geneva, 2010)Google Scholar
  4. 4.
    Codex Committee on Food Additives and Contaminants, Thirty-sixth session. (Rotterdam, 2003)Google Scholar
  5. 5.
    W.J. Spillane, in Advances in Sweeteners, ed. by T.H. Grenby (Chapman & Hall, Glasgow, 2012), pp. 6–24Google Scholar
  6. 6.
    G.E. DuBois, in Sweeteners and Sugar Alternatives in Food Technology, ed. by K. O'Donnell, M.W. Kearsley (Wiley, Iowa, 2012), pp. 137–163CrossRefGoogle Scholar
  7. 7.
    M. Horie, F. Ishikawa, M. Oishi, T. Shindo, A. Yasui A, K. Ito. Chromatogr. 1154, 423–428 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Armenta, S. Garrigues, M. De la Guardia, Anal. Chim. Acta 521, 149–155 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Zygler, A. Wasik, A. Kot-Wasik, J. Namiésnik, Anal. Bioanal. Chem. 400, 2159–2172 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Hashemi, A. Habibi, N. Jahanshahi, Food Chem. 124, 1258–1263 (2011)CrossRefGoogle Scholar
  11. 11.
    F.R. Rocha, E. Ródenas-Torralba, Á. Morales-Rubio, M. De la Guardia, Anal. Chim. Acta 547, 204–208 (2005)CrossRefGoogle Scholar
  12. 12.
    N.E. Llamas, M.S. Di Nezio, M.E. Palomeque, B.S. Fernandez, Anal. Chim. Acta 539, 301–304 (2005)CrossRefGoogle Scholar
  13. 13.
    AOAC, Official Method 957.09 Cyclohexylsulphamate (Cyclamate) salts in Nonalcoholic Beverages, 17th edn. (AOAC, Maryland, 2000)Google Scholar
  14. 14.
    A. Kinawi, H. Kia J. Clin. Chem. Clin. Biochem. 16, 365–369 (1978)Google Scholar
  15. 15.
    L.A. Ramos, C.C. Schmitt, E.T. Gómez, É.T. Química Nova 29, 1114–1120 (2006)Google Scholar
  16. 16.
    A. Castañeda-Ovando, C.A. Galán-Vidal, J.A. Rodriguez, M.E. Páez-Hernández, E. Rangel-Vargas, in Innovations in Food Science and Food Biotechnology Developing Countries, ed. by C. Regalado, B.E. García-Almendárez (Asociación Mexicana de Ciencia de los Alimentos A.C., Mexico, 2010) pp. 26–47Google Scholar
  17. 17.
    M.M. Giusti, R.E. Wrolstad, Curr. Protoc. Food Anal. Chem. F:F1:F1.2 (2001)Google Scholar
  18. 18.
    R. Wrolstad, R. Durst, J. Lee, Trends Food Sci. Tech. 16, 423–428 (2005)CrossRefGoogle Scholar
  19. 19.
    C.A. Galan-Vidal, A. Castañeda-Ovando, M.E. Páez-Hernández, E. Contreras-López, J. Mex, Chem. Soc. 58, 180–184 (2014)Google Scholar
  20. 20.
    J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 6th edn. (Pearson, Gosport, 2010), pp. 47–49Google Scholar
  21. 21.
    Codex Committee on Food Additives and Contaminants. Forty-fourth session. Hangzhou, China, (2012)Google Scholar
  22. 22.
    B. Haber, G.W.R. Lipinski, S. Rathjen, in Sweeteners and Sugar Alternatives in Food Technology, ed. by H. Mitchell (Blackwell Publishing, Iowa, 2012), pp. 65–83Google Scholar
  23. 23.
    D.L.H. Williams, Nitrosation reactions and the chemistry of nitric oxide, 1st edn. (Elsevier, Amsterdam, 2004), pp. 187–198CrossRefGoogle Scholar
  24. 24.
    J.C. Fry, in Natural food additives, ingredients and flavourings, ed. by D. Baines, R. Seal (Woodhead Publishing Limited, Philadelphia, 2012), pp. 41–75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Karina Aguilar-Arteaga
    • 2
  • Karla I. De Jesús-Fuentes
    • 1
  • Elizabeth Contreras-López
    • 1
  • Javier Añorve-Morga
    • 1
  • Araceli Castañeda-Ovando
    • 1
    Email author
  • Luis Guillermo González-Olivares
    • 1
  • Judith Jaimez-Ordaz
    • 1
  1. 1.Academic Area of ChemistryUniversidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  2. 2.Universidad Politecnica de Francisco I. MaderoFrancisco I. MaderoMexico

Personalised recommendations