Skip to main content

Advertisement

Log in

Yields of three acids during simulated fermentation of inulin and xylo-oligosaccharides enhanced by six exogenous strains

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Three acids (acetic, propionic and butyric acids) yielded from simulated colonic fermentation of inulin and xylo-oligosaccharides (XOS) in the absence and presence of six exogenous strains were investigated in this study. Both inulin and XOS were fermented by fecal extract (FE) prepared from healthy adults and by an exogenous strain for 48 h, and three acids generated in fermentation products at five time periods were detected by gas chromatography. Inulin and XOS during fermentation were capable of producing more propionic and butyric acids, respectively, whilst inoculation using one strain culture into fermentation systems mostly increased yields of three acids. In inulin-containing fermentation systems, these strains increased yields of propionic and butyric acids by 6–34 and 206–250%, respectively. In XOS-containing fermentation systems, these strains did not enhance yield of propionic acid, but increased yield of butyric acid by 50–96%. In general, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus rhamnosus, Enterococcus faecalis and Enterococcus faecium were more efficient than Lactobacillus acidophilus to increase yields of propionic and butyric acids. It is thus concluded that the six strains in total displayed beneficial effects on simulated fermentation of inulin and XOS through enhancing yields of three acids especially propionic and butyric acids with healthcare functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. AACC (American Association of Cereal Chemists), The definition of dietary fiber. AACC report. Cereal Food World 46, 112–126 (2001)

    Google Scholar 

  2. J.W. Anderson, P. Baird, R.H. Davis, S. Ferreri, M. Knudtson, A. Koraym, V. Waters, C.L. Williams, Health benefits of dietary fiber. Nutr. Rev. 67, 188–205 (2009)

    Article  Google Scholar 

  3. A. Padayachee, L. Day, K. Howell, M.J. Gidley, Complexity and health functionality of plant cell wall fibres from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 57, 59–81 (2017)

    CAS  Google Scholar 

  4. M.O. Weickert, A.F. Pfeiffer, Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 138, 439–442 (2008)

    CAS  Google Scholar 

  5. G.R. Gibson, Fibre and effects on probiotics (the prebiotic concept). Clin. Nutr. Suppl. 2, 25–31 (2004)

    Article  Google Scholar 

  6. M.M. Kaczmarczyk, M.J. Miller, G.G. Freund, The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 61, 1058–1066 (2012)

    Article  CAS  Google Scholar 

  7. D. Pathak, J. Majumdar, U. Raychaudhuri, R. Chakraborty, Characterization of physicochemical properties in whole wheat bread after incorporation of ripe mango peel. J. Food Meas. Charact. 10, 554–561 (2016)

    Article  Google Scholar 

  8. M. Namir, H. Siliha, M.F. Ramadan, Fiber pectin from tomato pomace: characteristics, functional properties and application in low-fat beef burger. J. Food Meas. Charact. 9, 305–312 (2015)

    Article  Google Scholar 

  9. G. El-Nagar, G. Clowes, C.M. Tudorica, V. Kuri, C.S. Brennan, Rheological quality and stability of yog-ice cream with added inulin. Int. J. Dairy Technol. 55, 89–93 (2002)

    Article  CAS  Google Scholar 

  10. P. Moniz, H. Pereira, L.C. Duarte, F. Carvalheiro, Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Ind. Crop. Prod. 62, 460–465 (2014)

    Article  CAS  Google Scholar 

  11. M.J. Vazquez, J.L. Alonso, H. Dommguez, J.C. Parajo, Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol. 11, 387–393 (2000)

    Article  CAS  Google Scholar 

  12. J. van Loo, J. Cummings, N. Delzenne, H. Englyst, A. Franck, M. Hopkins, N. Kok, G. Macfarlane, D. Newton, M. Quigley, M. Roberfroid, T. van Vliet, E. van den Heuvel, Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Brit. J. Nutr. 81, 121–132 (1999)

    Article  Google Scholar 

  13. P. Moniz, A.L. Ho, L.C. Duarte, S. Kolida, R.A. Rastall, H. Pereira, F. Carvalheiro, Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohyd. Polym. 136, 466–473 (2016)

    Article  CAS  Google Scholar 

  14. A. Moure, P. Gullon, H. Dominguez, J.C. Parajo, Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem. 41, 1913–1923 (2006)

    Article  CAS  Google Scholar 

  15. J.M. Lattimer, M.D. Haub, Effects of dietary fiber and its components on metabolic health. Nutrients 2, 1266–1289 (2010)

    Article  CAS  Google Scholar 

  16. B. Lin, J. Gong, Q. Wang, S. Cui, H. Yu, B. Huang, In vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocolloid. 25, 180–188 (2011)

    Article  CAS  Google Scholar 

  17. E. Capuano, The behaviour of dietary fibre in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. (2016). doi:10.1080/10408398.2016.1180501

    Google Scholar 

  18. V.M. Zamora-Gasga, G. Loarca-Pina, P.A. Vazquez-Landaverde, R.I. Ortiz-Basurto, J. Tovar, S.G. Sayago-Ayerdi, In vitro colonic fermentation of food ingredients isolated from Agave tequilana Weber var. azul applied on granola bars. LWT Food Sci. Technol. 60, 766–772 (2015)

    Article  CAS  Google Scholar 

  19. V. Kumar, A.K. Sinha, H.P. Makkar, G. de Boeck, K. Becker, Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit. Rev. Food Sci. Nutr. 52, 899–935 (2012)

    Article  CAS  Google Scholar 

  20. C.S. Venter, H.H. Vorster, J.H. Cummings, Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am. J. Gastroenterol. 85, 549–553 (1990)

    CAS  Google Scholar 

  21. J.L. Hu, S.P. Nie, M.Y. Xie, High pressure homogenization increases antioxidant capacity and short-chain fatty acid yield of polysaccharide from seeds of Plantago asiatica L. Food Chem. 138, 2338–2345 (2013)

    Article  CAS  Google Scholar 

  22. J.M. Wong, D.J. Jenkins, Carbohydrate digestibility and metabolic effects. J. Nutr. 137, 2539S–2546S (2007)

    CAS  Google Scholar 

  23. C.L. Zhu, X.H. Zhao, In vitro fermentation of a retrograded maize starch by healthy adult fecal extract and impacts of exogenous microorganisms on three acids production. Starch-Stärke 65, 330–337 (2013)

    Article  CAS  Google Scholar 

  24. E. Likotrafiti, K.M. Tuohy, G.R. Gibson, R.A. Rastall, An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe 27, 50–55 (2014)

    Article  CAS  Google Scholar 

  25. R.M. Atlas, in Handbook of Microbiological Media, 4th edn. (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  26. X.H. Zhao, Y. Lin, Resistant starch prepared from high-amylose maize starch with citric acid hydrolysis and its simulated fermentation in vitro. Eur. Food Res. Technol. 228, 1015–1021 (2009)

    Article  CAS  Google Scholar 

  27. M.L. Conolly, J.A. Lovegrove, K.M. Tuohy, Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J. Funct. Foods 2, 219–224 (2010)

    Article  Google Scholar 

  28. M.A. Kabel, L. Kortenoeven, H.A. Schols, A.G.J. Voragen, In vitro fermentability of differently substituted xylo-oligosaccharides. J. Agr. Food Chem. 50, 6205–6210 (2002)

    Article  CAS  Google Scholar 

  29. J. Wang, B. Sun, Y. Cao, C. Wang, In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohyd. Polym. 82, 419–423 (2010)

    Article  CAS  Google Scholar 

  30. J.L. Hu, S.P. Nie, C. Li, M.Y. Xie, In vitro fermentation of polysaccharide from the seeds of Plantago asiatica L. by human fecal microbiota. Food Hydrocolloid. 33, 384–392 (2013)

    Article  CAS  Google Scholar 

  31. M. Abou Hachem, J.M. Andersen, R. Barrangou, M.S. Moller, F. Fredslund, A. Majumder, M. Ejby, S.J. Lahtinen, S. Jacobsen, L. Lo Leggio, Y.J. Goh, T.R. Klaenhammer, B. Svensson, Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatal. Biotransfor. 231, 226–235 (2013)

    Article  Google Scholar 

  32. H. Kaplan, R.W. Hutkins, Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66, 2682–2684 (2000)

    Article  CAS  Google Scholar 

  33. R. Tabasco, P.F. de Palencia, J. Fontecha, C. Pelaez, T. Requena, Competition mechanisms of lactic acid bacteria and bifidobacteria: fermentative metabolism and colonization. LWT Food Sci. Technol. 55, 680–684 (2014)

    Article  CAS  Google Scholar 

  34. D.L. Topping, P.M. Clifton, Short-chain fatty acids and human colonic function: roles of resistant starch and non-starch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001)

    CAS  Google Scholar 

  35. K.C. Mountzouris, A.L. McCartney, G.R. Gibson, Intestinal microflora of human infants and current trends for its nutritional modulation. Brit. J. Nutr. 87, 405–420 (2002)

    CAS  Google Scholar 

  36. Q. Geng, X.H. Zhao, Influences of exogenous probiotics and tea polyphenols on the production of three acids during the simulated colonic fermentation of maize resistant starch. J. Food Sci. Technol. 52, 5874–5881 (2015)

    Article  CAS  Google Scholar 

  37. X.H. Zhao, Q. Geng, Acid production and conversion of konjac glucomannan during in vitro colonic fermentation affected by exogenous microorganisms and tea polyphenols. Int. J. Food Sci. Nutr. 67, 274–282 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Project No. 20092325110012). The authors thank the anonymous reviewers and editors for their valuable advices.

Author contributions

LK carried out the experimental works. XHZ designed the experiment, analyzed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Huai Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Zhao, XH. Yields of three acids during simulated fermentation of inulin and xylo-oligosaccharides enhanced by six exogenous strains. Food Measure 11, 696–703 (2017). https://doi.org/10.1007/s11694-016-9439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9439-4

Keywords

Profiles

  1. Xin-Huai Zhao