Skip to main content

Analyzing the effect of optimization conditions of germination on the antioxidant activity, total phenolics, and antinutritional factors of Chenopodium (Chenopodium album)

Abstract

The purpose of present study was to optimize the effect of germination temperature and time on the total phenolic content, antioxidant activity, saponins, tannins and phytates in Chenopodium album grains using the response surface methodology (RSM). Statistical analysis revealed that independent variables (germination time and germination temperature) significantly (p < 0.05) affected all responses (AoxA, TPC, saponins, tannins and phytates). The results indicated that with increasing germination time and germination temperature, TPC and AoxA increased while the tannins, saponins and phytates decreased significantly (p < 0.05). The superlative combination of germination bioprocess variables for producing optimized flour with the higher TPC (5.64 g/100 g sample) and AoxA (18.45 g/100 g) while as lower saponins (0.67 g/100 g), tannins (1.29 mg/100 g), and phytate (0.46 mg/100 g sample), respectively with germination temperature (25.54 °C) and germination time of 49.59 h. Thus the results of this study showed that germination enhanced the TPC and AoxA while reducing the tannins, saponins and phytate of C. album flour and thus may help in improving its nutrient content. Therefore the optimized germinated C. album flour with high functional potential may find numerous applications in novel food formulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    A. Bhargava, S. Shukla, R.S. Katiyar, D. Ohri, Selection parameters for genetic improvement in Chenopodium grain on sodic soil. J. Appl. Hortic. 5, 45–48 (2003)

    Google Scholar 

  2. 2.

    G.S. Gilani, K.A. Cockell, E. Sepehr, Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 88, 967–987 (2005)

    CAS  Google Scholar 

  3. 3.

    W.H. Idris, S.M. Abdel Rahaman, H.B. Elmaki, E.E. Babikar, A.H. Eltinay, Effect of malt pre-treatment on HCl extractability of calcium, phosphorus and iron of sorghum (Sorghum bicolor) cultivars. Int. J. Food Sci. Technol. 42, 194–199 (2007)

    CAS  Article  Google Scholar 

  4. 4.

    N.A. Mohammed, I.A.M. Ahmed, E.E. Barbiker, Nutritional evaluation of sorghum flour (Sorghum bicolour L. Moench) during processing of injera. World Acad. Sci. Eng. Technol. 51, 58–62 (2011)

    Google Scholar 

  5. 5.

    A.G. Yagoub, A biophysical study on roselle (Hibiscus sabdariffal) seeds total proteins of the traditionally fermented food. Ph.D thesis, Facuty of Agriculture, Khartoum: University of Khartoum, Sudan (2003)

  6. 6.

    P. Rozan, Y.H. Kuo, F. Lambein, Free amino acids present in commercially available seedlings sold for human consumption. A potential hazard for consumers. J. Agri. Food Chem. 48, 716–723 (2000)

    CAS  Article  Google Scholar 

  7. 7.

    M. Sarfarazi, S.M. Jafari, G. Rajabzadeh, Extraction optimization of saffron nutraceuticals through response surface methodology. Food Anal. Methods 8, 2273–2285 (2015)

    Article  Google Scholar 

  8. 8.

    A. Salimi, Y. Maghsoudlou, S.M. Jafari, A.S. Mahoonak, M. Kashaninejad, A.M. Ziaiifar, Preparation of lycopene emulsions by whey protein concentrate and maltodextrin and optimization by response surface methodology. J. Disper. Sci. Technol. 36, 274–283 (2014)

    Article  Google Scholar 

  9. 9.

    I.P. Claver, H. Zhang, Z.K. Li Qin, Z. Huiming, Optimization of ultrasonic extraction of polysaccharides from Chinese malted sorghum using response surface methodology. Pak. J. Nutr. 4, 336–342 (2010)

    Google Scholar 

  10. 10.

    C. Liyana-Pathirana, F. Shahidi, Optimization of extraction of phenolic compounds from wheat by using response surface methodology. Food Chem 93, 47–56 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    R. Mora-Escobedo, O. Paredes-Lopez, J. Dominguez, Optimization of a germination procedure by response surface methodology. LWT-Food Sci. Technol. 24, 518–522 (1991)

    Google Scholar 

  12. 12.

    J.X. Perales-Sanchez, C. Reyes-Moreno, M.A. Gomez-Favela, J.E. Milan-Carrillo, O. Cuevas-Rodriguez, A. Valdez-Ortiz, R. Gutierrez-Dorado, Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum. Nutr. 69, 196–202 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    L.M. Altenhofen, J. Dekker, Complex regulation of chenopodium album seed germination. Appl Ecol Env Res. 1, 133–142 (2013)

    Google Scholar 

  14. 14.

    H.S. El-Beltagi, S.M.A. El-Salam, A.A. Omran, Effect of soaking, cooking, germination and fermentation processing on proximate analysis and mineral content of three white sorghum varieties (Sorghum bicolor L. Moench). Not. Bot. Horti. Agrobo 40, 92–98 (2012)

    Google Scholar 

  15. 15.

    J. Xu, H. Zhang, X. Guo, H. Qiana, The impact of germination on the characteristics of brown rice flour and starch. J. Sci. Food Agric. 92, 380–387 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97, 654–660 (2006)

    CAS  Article  Google Scholar 

  17. 17.

    W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995)

    CAS  Article  Google Scholar 

  18. 18.

    B.O. Obadoni, P.O. Ochuko, Phytochemical studies and comparative efficacy of the extracts of some haemostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 8, 203–208 (2002)

    CAS  Google Scholar 

  19. 19.

    H.P. Makkar, M. Blummel, N.K. Borowy, K. Becker, Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61, 161–165 (1993)

    CAS  Article  Google Scholar 

  20. 20.

    N.R. Reddy, S.K. Sathe, D.K. Salunkhe, Phytate in legumes and cereals. Adv. Food Res. 28, 1–92 (1982)

    CAS  Article  Google Scholar 

  21. 21.

    M.T. Huang, C.T. Ho, C.Y. Lee, Phenolic compounds in food and their effects on health II: antioxidants and cancer prevention, American chemical society symposium series (American Chemical Society (ACS), Washington, DC, 1992), p. 507

    Book  Google Scholar 

  22. 22.

    S. Tian, K. Nakamura, H. Kayahara, Analysis of phenolic compounds in white rice, brown rice and germinated brown rice. J. Agric. Food Chem. 52, 4808–4813 (2004)

    CAS  Article  Google Scholar 

  23. 23.

    K.K. Adom, R.H. Liu, Antioxidant activity of grains. J. Agric. Food Chem. 50, 6182–6187 (2002)

    CAS  Article  Google Scholar 

  24. 24.

    L. Alvarez-Jubete, H. Wijngaard, E.K. Arendt, E. Gallagher, Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem. 119, 770–778 (2010)

    CAS  Article  Google Scholar 

  25. 25.

    P. Pasko, H. Barton, P. Zagrodzki, S. Gorinstein, M. Fołta, Z. Zachwieja, Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 115, 994–998 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    L. Bravo, Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56, 317–333 (2005)

    Article  Google Scholar 

  27. 27.

    F. Yang, T.K. Basu, B. Ooraikul, Studies on germination conditions and antioxidant contents of wheat grain. Int. J. Food Sci. Nutr. 52, 319–330 (2001)

    CAS  Article  Google Scholar 

  28. 28.

    S. Gorinstein, O.J.M. Vargas, N.O. Jaramillo, I.A. Salas, A.L.M. Ayala, P. Arancibia- Avila, F. Toledo, E. Katrich, S. Trakhtenberg, The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur. Food Res. Technol. 225, 321–328 (2007)

    CAS  Article  Google Scholar 

  29. 29.

    H. Zielinski, H. Kozłowska, Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agri. Food Chem. 48, 2008–2016 (2000)

    CAS  Article  Google Scholar 

  30. 30.

    J.M. Gee, K.R. Price, C.L. Ridout, G.M. Worttey, R.F. Hurrel, I.T. Johnson, Saponins of quinoa (Chenopodium quinoa): effect of processing on their abundance in quinoa products and their biological effects on intestinal mucosal tissue. J. Sci. Food Agric. 63, 201–209 (1993)

    CAS  Article  Google Scholar 

  31. 31.

    M. Stuardo, R. San, Martin, Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Ind. Crops Prod. 27, 296–302 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    J. Serrano, R. Pupponen-Pimia, A. Dauer, A.M. Aura, F. Saura-Calixto, Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 53, S310–S329 (2009)

    Article  Google Scholar 

  33. 33.

    E.A. Shimelis, S.K. Rakshit, Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem. 103, 161–172 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    H.B. Elmaki, E.E. Babiker, A.H. El Tinay, Change in chemical composition, grain malting, starch and tannin content and protein digestibility during germination of sorghum cultivars. Food Chem. 64, 331–336 (1999)

    CAS  Article  Google Scholar 

  35. 35.

    A. Sharma, A.C. Kapoor, Levels of antinutritioal factors in pearl millet as affected by processing treatment and various types of fermentation. Plant Food Hum. Nutr. 49, 241–252 (1996)

    CAS  Article  Google Scholar 

  36. 36.

    S. Rakic, S. Petrovic, J. Kukic, M. Jadranin, V. Tesevic, D. Povrenovic, S. Siler-Marinkovic, Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem. 104, 830–834 (2007)

    CAS  Article  Google Scholar 

  37. 37.

    D.A. Vattem, R. Ghaedian, K. Shetty, Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac. J. Clin. Nutr. 14, 120–130 (2005)

    CAS  Google Scholar 

  38. 38.

    D.M. Gibson, A.H. Ullah, Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch. Biochem. Biophys. 260, 503–513 (1988)

    CAS  Article  Google Scholar 

  39. 39.

    S.E. Mahgoub, S.A. El-Hag, Effect of milling, soaking, malting, heat- treatment and fermentation on phytate level of four sudanese sorghum cultivars. Food Chem. 61, 77–80 (1998)

    CAS  Article  Google Scholar 

  40. 40.

    I. Lestienne, C. Icard-Verniere, C. Picq, S. Treche, Effect of soaking whole cereal and legume seeds on iron, zinic and phytate contents. Food Chem. 89, 421–425 (2005)

    CAS  Article  Google Scholar 

  41. 41.

    J. Liang, B.Z. Han, M.R. Nout, R.J. Hamer, Effect of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem. 110, 821–828 (2008)

    CAS  Article  Google Scholar 

  42. 42.

    R. Sinha, A. Kawatra, Effect of processing on phytic acid and polyphenol contents of cowpeas (Vigna unguiculata (L) Walp). Plant Foods Hum. Nutr. 58, 1–8 (2003)

    Article  Google Scholar 

  43. 43.

    L.U. Thompson, C.L. Button, D.J. Jenkins, Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose response in humans. Am. J. Clin. Nutr. 46, 467–473 (1988)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romee Jan.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jan, R., Saxena, D.C. & Singh, S. Analyzing the effect of optimization conditions of germination on the antioxidant activity, total phenolics, and antinutritional factors of Chenopodium (Chenopodium album). Food Measure 11, 256–264 (2017). https://doi.org/10.1007/s11694-016-9392-2

Download citation

Keywords

  • Chenopodium
  • TPC
  • AoxA
  • Saponins
  • Germination bioprocess
  • RSM