Skip to main content

Advertisement

Log in

Effects of different storage techniques on rupture properties of kiwifruits

  • Original paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Storage of harvested agricultural products under optimum storage conditions is very important for selling them as an intended price in the market and for the maintenance of their quality longer. On the other hand, different storage techniques effects the resistance properties of products. In this research, some rupture properties like, maximum force and bioyield force, stress, maximum energy in maximum force, maximum energy in bioyield point, modulus of elasticity, bioyield deformation, maximum breaking dilatation and minimum damage height, of ‘Hayward’ kiwifruits stored under four different storage conditions (Normal Atmosphere; 21 % O2 + 0 % CO2 (NA as Control), NA storage after 1-Methylcyclopropene treatment (1-MCP + NA), NA storage with ethylene control (NA + EC), Controlled Atmosphere storage (2 % O2 + 5 % CO2) with ethylene control (CA + EC) and under two different load conditions were evaluated. Both under two load conditions rupture properties of kiwifruits stored under CA + EC conditions were measured higher than other storage conditions. In particular, maximum force and modulus of elasticity values of CA-stored kiwis were found to be statistically important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Referances

  1. A.R. Ferguson, Kiwifruit in the world: 2014. Acta Hortic. 1096, 33–46 (2015)

    Article  Google Scholar 

  2. FAO. FAOSTAT Database. 2012. http://faostat.fao.org/faostat/. Accessed 22 Sept 2012

  3. C.H. Crisosto, A.A. Kader, Kiwifruit Postharvest Quality Maintenance Guidelines, vol. 95616 (Department of Pomology, University of California, Davis, 1999), p. 9

    Google Scholar 

  4. A.R. Ferguson, Kiwifruit: A Botanical Review, in Horticultural Reviews, vol. 6, ed. by J. Janick (Avi Publishing Inc, Westport, 1984), pp. 1–64

    Google Scholar 

  5. J.E. Harman, G. Hopkirk, Kiwifruit Testing For Maturity: Use of index. N.Z. Miner. Agric. Fish. Aglink HPP 213 (1982)

  6. M.D.C. Antunes, E.M. Sfakiotakis, The effect of controlled atmosphere and ultra low oxygen on storage ability and quality of ‘Hayward’ kiwifruit.In Proceeding of the third international symposium on kiwifruit, Ed.: E. Sfakiotakis, J. Porlingis 444, 2, 613–618 (1997)

  7. J. Burdon, N. Lallu, D. Billing, D. Burmeister, C. Yerasley, M. Wang, A. Gunson, H. Young, Carbon dioxide scrubbing systems alter the ripe fruit volatile profiles in controlled-atmosphere stored ‘Hayward’ kiwifruit. Postharvest Biol. Techol., 35, 133–141 (2005)

    Article  CAS  Google Scholar 

  8. A.T. Öz, A. Eriş, Farklı zamanlarda derilen Hayward (Actinidia deliciosa) kivi çeşidinin kontrollü ve normal atmosfer koşullarında muhafazası. III. Bahçe Ürünlerinde Muhafaza ve Pazarlama Sempozyumu, 6–9 Eylül 2005, Mustafa Kemal Üniversitesi, Antakya–Hatay, 244–250 (2005)

  9. I. Yildirim, ‘Hayward’ Kivi Çeşidinin Normal ve Kontrollü Atmosfer Koşullarında Depolanması Üzerine Araştırmalar (In Turkish), Doktora Tezi, Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, 159 s.(2010)

  10. M.L. Arpaia, F.G. Mitchell, A.A. Kader, G. Mayer, Ethylene and temperature effects on softening and white core inclusions of kiwifruit stored in air or controlled atmospheres. J. Amer. Soc. Hort. Sci., 111, 149–153 (1986)

    CAS  Google Scholar 

  11. A.A. Kader, A summary of CA recommendations for fruits other than apples and pears, in 7th International Controlled Atmosphere Research Conference, University of California, Davis, July 13-18, 3, ed. by E.J. Mitcham (University of California, Davis, CA., 1997), pp. 1–34

    Google Scholar 

  12. E.C. Sisler, M, Serek, Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol. Plant. 100, 577–582 (1997)

    Article  CAS  Google Scholar 

  13. S.M. Blankenship, J.M. Dole, 1-Methylycyclopropene: a review. Postharvest Biol. Technol. 28, 1–25 (2003)

    Article  CAS  Google Scholar 

  14. C.B.Watkins, W.B. Miller, Implications of 1-methylcyclopropene registration for use on horticultural products. In: Biology and Technology of the Plant Hormone Ethylene III, p 385-390 M.Vendrell, H Klee, J.C Pech, F. Romojaro, (eds.) IOS Press, Amsterdam, Netherlands.(2003)

  15. H.O. Kim, E.W. Hewett, N. Lallu, Softening and ethylene production of kiwifruit reduced with 1-methylcyclopropene. Acta Hort. 553, 167–170 (2001)

    Article  CAS  Google Scholar 

  16. R.L. Fisher, A.B. Benett, Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 675–703 (1991)

    Google Scholar 

  17. E.W. Hewett, H.O. Kim, N. Lallu, Postharvest Physiology of Kiwifruit: The Challenges Ahead., Proc. 4th Int. Kiwi Symp. Eds. J. Retamales et al., Acta Hort. 498, ISHS 1999, 203-214 (1999)

  18. K. Vursavus, H. Kelebek, S. Selli, A study on some chemical and physicomechanic properties of three sweet cherry varieties (Prunus avium L.) in Turkey. J. Food Eng. 74, 568–575 (2006)

    Article  CAS  Google Scholar 

  19. G. Sitkei, Mechanics of Agricultural Materials (Akademiai Kiad, Budapest, 1986)

    Google Scholar 

  20. A. Celik, S. Ercisli, N. Turgut, Some physical, pomological and nutritional properties of kiwifruit cv. Hayward. Int. J. Food Sci. Nutr. 58(6), 411–418 (2007)

    Article  CAS  Google Scholar 

  21. H. Masoudi, A. Tabatabaeefar, A.M. Borghei, M. Shahbake, Investigation of mechanical properties variation of three export varieties of apples alluring the storage. M. S. Thesis, University of Tehran, Karaj, Iran. pp: 1-104 (2004)

  22. K. Vusvarus, F. Ozgüven, Determining the Strength Properties of the Dixired Peach Variety. Turkish Journal of Agricultural and Forestry. 27, 155–160 (2003)

    Google Scholar 

  23. Y.B. Yurtlu, D. Erdoğan, Effect of Storage Time on Some Mechanical Properties and Bruise Suspectibility of Pears and apples. Turk J Agric For 29, 469–482 (2005)

    Google Scholar 

  24. L. Zhiguo, C. Thomas, Effect of Number of Locules. Loading position, and compression speed on the mechanical behaviors of tomato fruits, Int. J of Food Prop. 18(6), 1350–1358 (2015). doi:10.1080/10942912.2014.917379)

    Google Scholar 

  25. F. Kalkan, M. Kara, S. Bastaban, N. Turgut, Strength and frictional properties of Popcorn kernel as affected by moisture content. Int. J. Food Prop. 14(6), 1197–1207 (2011). doi:10.1080/1094291100363731)

    Article  Google Scholar 

  26. B. Jaroslav, S. Nedomova, J. Trnka, J. Strnkova, Behaviour of japanese quail eggs under mechanical compression. Int. J. of Food Prop. 18(5), 1110–1118 (2015). doi:10.1080/10942912.2013.862634

    Article  Google Scholar 

  27. H. Zareiforoush, M.H. Komarizadeh, M.R. Alizadeh, H. Tavakoli, M. Masoumi, Effects of moisture content, loading rate, and grain orientation on fracture resistance of paddy (Oryza Sativa L.) Grain. Int. J. Food Prop. 15(1), 89–98 (2012). doi:10.1080/10942911003754643)

    Article  Google Scholar 

  28. N.N. Mohsenin, Physical Properties of Plant and Animal Materials (Gordon and Breach Science Publishing Co., New York, 1970), pp. 78–97

    Google Scholar 

  29. ASAE S368.4, Compression test of food materials of convex shape (American Society of Agricultural Engineers, St. Joseph, 2001)

    Google Scholar 

  30. Y. Chen, J.L. Gratton, J. Liu, Power requirements of hemp cutting and conditioning. Biosys. Eng. 87(4), 417–424 (2004)

    Article  Google Scholar 

  31. O. Kabas, H.K. Celik, A. Ozmerzi, İ. Akinci, Drop test simulation of a sample tomato with finite element method. J. Sci. Food Agric. 88, 1537–1541 (2008). doi:10.1002/jsfa.3246

    Article  CAS  Google Scholar 

  32. M.N. Galedar, A. Tabatabaeefar, A. Jafari, A. Sharifi, S. Rafiee, Bending and shearing characteristic of Alfalfa stems. Agric. Eng. Int.: CIGR EJ. vol. X (2008)

  33. A. Ince, S. Uğurluay, E. Güzel, M.T. Özcan, Bending and shearing characteristic of sunflower stalk residue. Biosys. Eng. 92(2), 175–181 (2005)

    Article  Google Scholar 

  34. G.C. Braga, S.M. Couto, T. Hara, J.T.P. Neto, Mechanical behaviour of macadamia nut under compression loading. J. Agric. Eng. Res. 72, 239–245 (1999)

    Article  Google Scholar 

  35. B.C. Horsfield, R.B. Fridley, L.L. Claypool, Application of theory of elasticity to the design of fruit harvesting and handling equipment for minimum bruising. Trans. Am. Soc. Agric. Eng. 15, 746–750 (1972)

    Article  Google Scholar 

  36. S. Calisir, T. Marakoglu, H. Ogut, O. Ozturk, Physical properties of rapeseed (Brassica napus oleifera L.). J. Food Eng. 69, 61–66 (2005)

    Article  Google Scholar 

  37. H. Haciseferoglu, M. Ozcan, M.H. Sonmete, O. Ozbek, Some physical and chemical parameters of wild medlar (Mespilus germanica L.). J. Food Eng. 69, 1–7 (2005)

    Article  Google Scholar 

  38. O. Ozbek, A.Y. Seflek, K. Carman, Some mechanical properties of safflower stalk. Appl. Eng. Agric. 25, 619–625 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, D., Yildirim, I. Effects of different storage techniques on rupture properties of kiwifruits. Food Measure 10, 539–545 (2016). https://doi.org/10.1007/s11694-016-9333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9333-0

Keywords

Navigation