Skip to main content
Log in

Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Extraction conditions for maximum values of polyphenol content, flavonoid content, total reducing power and DPPH free radical scavenging of vegetable milk extract from dehulled Mucuna cochinchinensis flour and whole M. cochinchinensis flour were investigated using response surface methodology (RSM). A Central Composite Design with three factors: temperature (25–95 °C); extraction time (6–74 min) and water to flour ratio (6–24 mL/g) were used to study the response variables. Data analysis showed that all the factors significantly (p < 0.05) affected the responses variables. Desirability function showed that the optimal conditions were 55–59 °C for extraction temperature, water to flour ratio of 16–17 mL/g and an extraction time of 57–67 min. At these optimum points the polyphenol content, flavonoid content, total reducing power and DPPH free radical scavenging were respectively 113.5, 32.77, 0.78 g/100 mL, 82.14 %, for dehulled M. cochinchinensis milk and 138.2, 42.46, 0.8 g/100 mL, 73.14 % for vegetable milk extracted for whole M. cochinchinensis flour. In addition, the overall optimum regions for dehulled and whole mucuna milk had a desirability of 0.91–1. The optimal condition was verified at the optimum points for model validation and the response values were not significantly different from the predicted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Touba, I. Zahra, M.T. Mostafa, A.P. Mandana, Z.M. Mohammad, A.S. Mohammad, Investigation of Optimized Methods for Improvement of Organoleptical and Physical Properties of Soy milk. Int. J. Farm. Allied Sci. 2(10), 245–250 (2013)

    Google Scholar 

  2. L. Chan, L.R. Beuchat, Chemical, physical and sensory characteristics of peanut milk as affected by processing conditions. J. Food Sci. 57, 401–405 (1992)

    Article  Google Scholar 

  3. J. Isanga, G. Zhang, Production and evaluation of some physicochemical parameters of peanut milk yoghurt. LWT-Food Sci. Tech. 42, 1132–1138 (2009)

    Article  CAS  Google Scholar 

  4. S.H. Rehman, M.M. Nawaz, M.M. Ahmad, S. Hussain, A. Murtaza, S.H. Shahid, Physico-chemical and sensory evaluation of ready to drink soy-cow milk blend. Pak. J. Nutr. 6(3), 283–285 (2007)

    Article  Google Scholar 

  5. J.K. Ikya, D.I. Gernah, H.E. Ojobo, O.K. Oni, Effect of cooking temperature on some quality characteristics of soy milk. Adv. J. Food Sci. Tech. 5(5), 543–546 (2013)

    Google Scholar 

  6. S. Dande, R. Manchala, Antioxidant and phenolic content of nuts, oil seeds, milk and milk products commonly consumed in India. Food Nutr. Sci. 2, 422–427 (2011)

    Article  Google Scholar 

  7. M. Rivas, R.P. Garay, J.F. Escanero Jr., P. Cia, J.O. Alda, Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J. Nutr. 132, 1900–1902 (2002)

    CAS  Google Scholar 

  8. E.I. Bridget, Y. Baturh, Nutritional evaluation of milk bush (Thevetia neriifolia) seed oil in wistar albino rats. A.U. J. Tech 16(3), 169–173 (2013)

    Google Scholar 

  9. Y.D. Mang, A.B. Abdou, N.Y. Njintang, M.E.J. Djiogue, A.E. Panyo, B. Clemence, R. Ndjouenkeu, C.B.B. Loura, M.F. Mbofung, Optimization of vegetable milk extraction from whole and dehulled Mucuna pruriens (Var Cochinchinensis) flours using central composite design. J. Food Sci. Tech. (2015). doi:10.1007/s13197-015-1765-8

    Google Scholar 

  10. C.Y. Gan, A.A. Latiff, Optimisation of the solvent extraction of bioactive compounds from Parkia speciosapod using response surface methodology. Food Chem. 124, 1277–1283 (2011)

    Article  CAS  Google Scholar 

  11. A. Singh, A. Kuila, G. Yadav, R. Banerjee, Polyphenol Extraction from Okara, Food Tech. Biotech. 49(3), 322–328 (2011)

    CAS  Google Scholar 

  12. C.D. Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 30, 3268–3295 (2007)

    Article  CAS  Google Scholar 

  13. M. Pinelo, M. Rubilar, M. Jerez, J. Sinerio, M.J. Nuñez, Effect of solvent, temperature and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 53, 2111–2117 (2005)

    Article  CAS  Google Scholar 

  14. M. Giovanni, Response surface methodology and product optimization. Food Tech. 37, 41–45 (1983)

    Google Scholar 

  15. M.T.J. Ngatchic, S.S. Dongmo, Y.N. Njintang, T. Maoundombaye, J. Oben, F.C.M. Mbofung, Evaluation of some selected blood parameters and histopalogical of liver and kidney of rats fed protein-substituted Mucuna flour and derived protein rich product. Food Chem. Toxicol. 57, 46–53 (2013)

    Article  CAS  Google Scholar 

  16. Y.D. Mang, A.B. Abdou, N.Y. Njintang, M.E.J. Djiogue, B. Clemence, J. Scher, C.M.F. Mbofung, Effect of dehulling and boiling on the physico-chemical, functional and pasting properties of two varieties of Mucuna bean (Mucuna pruriens L.) flours. J. Food Meas. Charact. (2015). doi:10.1007/s11694-015-9251-6

    Google Scholar 

  17. X. Gao, M. Ohlander, N. Jeppsson, L. Björk, V. Trajkovski, Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 48, 1485–1490 (2000)

    Article  CAS  Google Scholar 

  18. N. Mimica-Dukic, G. Kite, O. Gasic, D. Stanjer, R. Pavkov, R. Jancic, L. Fellows, Comparative study of volatile constituents and antimicrobial activity of mentha species. Acta Hort. 344, 110–115 (1993)

    Article  Google Scholar 

  19. P.D. Duh, G.C. Yen, Antioxidative activity of three herbal water extracts. Food Chem. 60, 639–645 (1997)

    Article  CAS  Google Scholar 

  20. Y. Okada, M. Okada, Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem. 46, 401–406 (1998)

    Article  CAS  Google Scholar 

  21. M. Hamed, T. Chin-Ping, N.S.A. Nazimah Hamid, Y. Salmah, Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll 22, 1212–1223 (2008)

    Article  Google Scholar 

  22. H. Karazhiyan, M.A. Seyed, G. Razavi, O. Phillips, Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll 25, 915–920 (2011)

    Article  CAS  Google Scholar 

  23. G. Derringer, R. Suich, Simultaneous optimization of several response variables. J. Quality Tech. 25, 199–204 (1980)

    Google Scholar 

  24. C. Cojocaru, M. Khayet, G. Zakrzewska-Trznadel, A. Jaworska, Modeling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach. J. Haz. Mater. 167, 52–63 (2009)

    Article  CAS  Google Scholar 

  25. A.M. Joglekar, A.T. May, Product excellence through design of experiments. Cereal Foods World 32, 857–868 (1987)

    Google Scholar 

  26. B. Zhang, Y. Cui, G. Yin, X. Li, X. Zhou, Alkaline Extraction Method of Cotton seed Protein Isolate. Modern Appl. Sci. 3(3), 77–82 (2009)

    CAS  Google Scholar 

  27. A.A. Bouba, N.N. Yanou, B.G. Nkouam, D.Y. Mang, E.A. Mehanni, J. Scher, D. Montet, C.M. Mbofung, Desorption isotherms, net isosteric heat and the effect of temperature and water activity on the antioxidant activity of two varieties of onion (Allium cepa L). Int. J. Food Sci. Tech. 49(2), 444–452 (2014)

    Article  CAS  Google Scholar 

  28. T.J. Arif, R.K. Majid, M. Imtiyaz, B.S. Jang, A. Arif, Q.M.R. HAQ, Dietary flavonoid quercetin and associated health benefits—an overview. Food Rev. Int. 26, 302–317 (2010)

    Article  Google Scholar 

  29. J. Santas, R. Carbo, M.H. Gordon, M.P. Almajano, Comparison of the antioxidant activity of two Spanish onion varieties. Food Chem. 107, 1210–1216 (2008)

    Article  CAS  Google Scholar 

  30. J. Susu, C. Weixi, X. Baojun, Food Quality Improvement of Soy Milk Made from Short-Time Germinated Soybeans. Foods 2, 198–212 (2013)

    Article  Google Scholar 

  31. J.M. Rodríguez-Roque, A.M. Rojas-Graü, P. Elez-Martínez, O. Martín-Belloso, Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 136, 206–212 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Part of this study was carried out within the team TQ2A (Technologie, qualité, innovations agro-alimentaires). In this respect we are grateful to the financial support of AIRD. The authors also declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yanou Njintang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mang, D.Y., Abdou, A.B., Njintang, N.Y. et al. Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk. Food Measure 9, 495–507 (2015). https://doi.org/10.1007/s11694-015-9258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9258-z

Keywords

Navigation