Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing

Abstract

In recent times computer vision employing image processing techniques has been developed rapidly in order to quantitatively characterize of foods. In this study, effect of cress seed gum as a novel gluten substitute and xanthan gum (1 % base on flour and starch weight) on gluten-free bread were investigated by image processing. Additionally, bread crumb analyzed during storage (24 and 72 h). Bread features selected for analysis were moisture content, specific volume, slice shape, crust and crumb color, pore area fraction, pore size distribution, number of cells/cm2, pore shape, fractal dimension of pore boundaries and crumb texture. The results exhibited, hydrocolloids improved quality of gluten-free breads significantly (p < 0.05). Hydrocolloid addition increased pore area fraction and had positive effect on crumb color during storage. Hydrocolloid by forming thick layer influenced the stability of gas cells and caused more regular and solids pores in gluten-free bread which was more noticeable in breads containing cress seed gum. Fractal values of boundaries indicated that the breads containing cress seed gum had more regular and smooth boundaries. Texture analysis by gray level co-occurrence matrix revealed stability crumb texture during storage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    J.A. Murray, Am. J. Clin. Nutr. 69(3), 354 (1999)

    CAS  Google Scholar 

  2. 2.

    E. Gallagher, T. Gormley, E. Arendt, Trends Food Sci. Technol. 15(3), 143 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    S. Susanna, P. Prabhasankar, Food Sci. Technol. (LWT) 50(2), 613 (2012)

    Article  Google Scholar 

  4. 4.

    R. Mahmoud, E. Yousif, M. Gadallah, A. Alawneh, Ann. Agric. Sci. 58(1), 19 (2013)

    Google Scholar 

  5. 5.

    A. Bakke, Z. Vickers, J. Food Sci. 72(7), 473 (2007)

    Article  Google Scholar 

  6. 6.

    A. Lazaridou, D. Duta, M. Papageorgiou, N. Belc, C. Biliaderis, J. Food Eng. 79(3), 1033 (2007)

    CAS  Article  Google Scholar 

  7. 7.

    M. Mohammadi, N. Sadeghnia, M.H Azizi, T.R. Neyestani, A.M Mortazavian, J. Ind Eng Chem. 20(4), 1812 (2014)

  8. 8.

    E. Dickinson, Food Hydrocoll. 17(1), 25 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    S. Mezaize, S. Chevallier, A. Le Bail, M. De Lamballerie, J. Food Sci. 74(3), 140 (2009)

    Article  Google Scholar 

  10. 10.

    I. Demirkesen, B. Mert, G. Sumnu, S. Sahin, J. Food Eng. 96(2), 295 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    E. Gallagher, T. Gormley, E. Arendt, J. Food Eng. 56(2), 153 (2003)

    Article  Google Scholar 

  12. 12.

    G. Sworn, in Handbook of Hydrocolloids, ed. by G.O. Phillips, Williams, Peter Anthony (CRC Press, Boca Raton, 2000)

    Google Scholar 

  13. 13.

    A. Imeson, Food stabilisers, thickeners and gelling agents (Wiley, Oxford, 2011)

    Google Scholar 

  14. 14.

    E. Gimeno, C. Moraru, J. Kokini, Cereal Chem. 81(1), 100 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    S. Naji, S.M.A. Razavi, H. Karazhiyan, Food Hydrocoll. 28(1), 75 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    S. Naji, S.M.A. Razavi, H. Karazhiyan, A. Koocheki, Electron. J. Environ. Agric. Food Chem. 11(3), 222 (2012)

    CAS  Google Scholar 

  17. 17.

    H. Karazhiyan, S.M.A. Razavi, G.O. Phillips, Y. Fang, S. Al-Assaf, K. Nishinari, Int. J. Comp. Sci. Info. Technol. 46(5), 1066 (2011)

    CAS  Google Scholar 

  18. 18.

    S. Naji, S.M.A Razavi, H. Karazhiyan, Food Bioprocess. Technol. 6, 1302 (2013)

  19. 19.

    V. Gökmen, H.Z. Senyuva, B. Dülek, E. Cetin, Mol. Nutr. Food Res. 50(9), 805 (2006)

    Article  Google Scholar 

  20. 20.

    C.-J. Du, D.-W. Sun, J. Food Eng. 72(1), 39 (2006)

    Article  Google Scholar 

  21. 21.

    D.-W. Sun, Computer vision technology for food quality evaluation. Food science and technology International series (Academic Press, London, 2008)

  22. 22.

    H. Sapirstein, R. Roller, W. Bushuk, Cereal Chem. 71, 383 (1994)

    Google Scholar 

  23. 23.

    R. Jahromi, S. Hossein, M. Karimi, F.T Yazdi, S.A Mortazavi, J. Food Process. Preserv. ISSN 1745–4549 (2013)

  24. 24.

    S. Ozge Ozkoc, G. Sumnu, S. Sahin, Food Hydrocoll. 23(8), 2182 (2009)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Mohd Jusoh, N. Chin, Y. Yusof, R. Abdul Rahman, J. Food Eng. 94(3), 366 (2009)

    Article  Google Scholar 

  26. 26.

    S. Wang, A. Karrech, K. Regenauer-Lieb, S. Chakrabati-Bell, J. Food Eng. 116(4), 852 (2013)

    Article  Google Scholar 

  27. 27.

    S. Wang, P. Austin, S. Bell, J. Cereal Sci. 54(2), 203 (2011)

    Article  Google Scholar 

  28. 28.

    J. Gray, J. Bemiller, Compr. Rev. Food Sci. Food Saf. 2(1), 1 (2003)

    CAS  Article  Google Scholar 

  29. 29.

    American Association Of Cereal Chemists (AACC), Approved methods of the AACC. (St Paul, Minneapolis, 2000)

  30. 30.

    R. Quevedo, J. Aguilera, F. Pedreschi, Food Bioprocess. Tech. 3(5), 637 (2010)

    Article  Google Scholar 

  31. 31.

    I.C Moreira, in Complexidade e Caos, ed. by H.M Nussenzveig (Editora UFRJ/COPEA, Rio de Janeiro), pp. 51–82

  32. 32.

    M. Barros Filho, F. Sobreira, Assessing texture pattern in slum across scales: an unsupervised approach, Vol. 87 (CASA Working Papers Series, 2005)

  33. 33.

    C. Tournier, M. Grass, D. Zope, C. Salles, D. Bertrand, J. Food Eng. 113(4), 615 (2012)

    Article  Google Scholar 

  34. 34.

    P. Mohanaiah, P. Sathyanarayana, L. GuruKumar, Int. J. Sci. Res. Publ. 3(5), 2250 (2013)

    Google Scholar 

  35. 35.

    H.A. Gavilighi, M.H. Azizi, M. Barzegar, M.A. Ameri, J. Food Technol. 4(3), 185 (2006)

    Google Scholar 

  36. 36.

    A. Hegazy, M. Ammar, M. Ibrahium, World J. Dairy Food Sci. 4(2), 123 (2009)

    Google Scholar 

  37. 37.

    A. Guarda, C. Rosell, C. Benedito, M. Galotto, Food Hydrocoll. 18(2), 241 (2004)

    CAS  Article  Google Scholar 

  38. 38.

    M.E. Barcenas, C.M. Rosell, Food Hydrocoll. 19(6), 1037 (2005)

    CAS  Article  Google Scholar 

  39. 39.

    Z. Kohajdová, J. Karovičová, Š. Schmidt, Acta Chim. Slovaca 2(1), 46 (2009)

    Google Scholar 

  40. 40.

    H. Karazhiyan, S.M.A. Razavi, G.O. Phillips, Food Hydrocoll. 25(5), 915 (2011)

    CAS  Article  Google Scholar 

  41. 41.

    F. Fan, Q. Ma, J. Ge, Q. Peng, W.W. Riley, S. Tang, J. Food Eng. 118(4), 426 (2013)

    Article  Google Scholar 

  42. 42.

    F. Pedreschi, J. Leon, D. Mery, P. Moyano, Food Res. Int. 39(10), 1092 (2006)

    Article  Google Scholar 

  43. 43.

    R. Ziobro, T. Witczak, L. Juszczak, J. Korus, Food Hydrocoll. 32, 2, (2013)

  44. 44.

    L.S. Sciarini, P.D. Ribotta, A.E. León, G.T. Pérez, Int. J. Food Sci. Technol. 45(11), 2306 (2010)

  45. 45.

    R. Sharadanant, K. Khan, Cereal Chem. 80(6), 773 (2003)

    CAS  Article  Google Scholar 

  46. 46.

    I. Mandala, K. Sotirakoglou, Food Hydrocoll. 19(4), 709 (2005)

    CAS  Article  Google Scholar 

  47. 47.

    A. Kadir, L.E. Nugroho, A. Susanto, P.I. Santosa, Int. J. Comp. Sci. Info. Technol. 3(3), 256 (2011)

    Google Scholar 

  48. 48.

    R. Agarwal, S. Agarwal, N. Mishra, Int. J. Comp. Sci. Info. Technol. 2(4), 80 (2013)

    Google Scholar 

  49. 49.

    U. Gonzales-Barron, F. Butler, Eur. Food Res. Technol. 226(4), 721 (2008)

    CAS  Article  Google Scholar 

  50. 50.

    G. Juodeikiene, J. Salomskiene, D. Eidukonyte, D. Vidmantiene, V. Narbutaite, L. Vaiciulyte-Funk, Food Technol. Biotechnol. 49(4), 502 (2011)

    Google Scholar 

  51. 51.

    J. Chanona-Pérez, R. Quevedo, A. R. Jiménez Aparicio, C. Gumeta Chávez, J. A. Mendoza Pérez, G. Calderón Domínguez, L. Alamilla-Beltrán, G. F. Gutiérrez-López, in Food engineering: integrated approaches, ed. by G.V. B.-C. Gustavo, F. Gutiérrez-López, Jorge Welti-Chanes, Efrén Parada-Arias (Springer New York, 2008), pp. 277–286

  52. 52.

    A. Shahbahrami, T.A. Pham, K. Bertels, J. Supercomput. 59(3), 1455 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohebbat Mohebbi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naji-Tabasi, S., Mohebbi, M. Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing. Food Measure 9, 110–119 (2015). https://doi.org/10.1007/s11694-014-9216-1

Download citation

Keywords

  • Image analysis
  • Gluten-free bread
  • Cress seed gum
  • Xanthan gum