Skip to main content
Log in

Optimization and characterization of pulsed electric field parameters for extraction of quercetin and ellagic acid in emblica officinalis juice

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A novel study has been optimized for the application of pulsed electric field (PEF) treatment (varying from 18 to 24 kV cm−1 for the duration 300–1,000 µs) on fresh emblica juice for extracting quercetin & ellagic acid which are considered as the major secondary metabolites in plant based foods. HPLC–PDA studies showed substantial increase (p < 0.05) in the PEF extracted levels of above metabolites in herb juice. It can be attributed to PEF induced vibrational disruption which increases the metabolic stress leading to emergence of these compounds. Both Raman and FTIR characterization, confirmed the presence of these in emblica juice. Electric field strength of 22 kV cm−1 was found to be optimum, where maximum cell disintegration index (0.79) was achieved during treatment time of 500 µs, which enhanced the amount of quercetin to about ninefolds and ellagic acid to about twofolds respectively, in comparison to untreated and thermally treated juice sample. However, a reverse trend was observed in thermally treated juice where degradation of the compounds (p < 0.05) was detected. Thus, PEF can be considered as a viable medium for extracting intracellular metabolites, thereby incrementing the functional potential of emblica juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Khan, Roles of Emblica officinalis in medicine—a review. Bot. Res. Int. 2, 218–228 (2009)

    CAS  Google Scholar 

  2. S.A. Filipiak, M. Kurzawa, E. Szłyk, Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry. Chem. Pap. 66, 259–268 (2012)

    Article  Google Scholar 

  3. S. Patel, R. Goyal, Emblica officinalis Geart: a comprehensive review on phytochemistry, pharmacology and ethnomedicinal uses. Res. J. Med. Plant 6, 6–16 (2012)

    Article  CAS  Google Scholar 

  4. E. Singh, S. Sharma, A. Pareek, J. Dwivedi, S. Yadav, S. Sharma, Phytochemistry, traditional uses and cancer chemopreventive activity of Amla (Phyllanthus emblica): the sustainer. J. Appl. Pharm. Sci. 2, 176–183 (2011)

    Google Scholar 

  5. L.Z. Zhang, W.H. Zhao, Y.J. Guo, G.Z. Tu, S. Lin, L. Xin, Studies on chemical constituents in fruits of Tibetan medicine Phyllanthus emblica. China J. Chin. Materi. Med. 28, 940 (2003)

    CAS  Google Scholar 

  6. D. Malešev, V. Kuntić, Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J. Serb. Chem. Soc. 72, 921–939 (2007)

    Article  Google Scholar 

  7. S. Kamaraj, R. Vinodhkumar, P. Anandakumar, S. Jagan, G. Ramakrishnan, T. Devaki, The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo (a) pyrene. Biol. Pharm. Bull. 30, 2268–2273 (2007)

    CAS  Google Scholar 

  8. A. Scalbert, G. Williamson, Dietary intake and bioavailability of polyphenols. J. Nutr. 130, 2073S–2085S (2000)

    CAS  Google Scholar 

  9. A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds. Molecules 18, 2328–2375 (2013)

    Article  CAS  Google Scholar 

  10. R.J. Robbins, Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem. 51, 2866–2887 (2003)

    Article  CAS  Google Scholar 

  11. J.Á. Suárez, C.E. Rüfer, R. Gervilla, B. Guamis, A.X. Roig-Sagués, J. Saldo, Influence of ultra-high pressure homogenisation on antioxidant capacity, polyphenol and vitamin content of clear apple juice. Food Chem. 127, 447–454 (2011)

    Article  Google Scholar 

  12. Oms OG, Odriozola SI, Martín BO (2012) In: V Rao (ed.) Phytochemicals—A Global Perspective of Their Role in Nutrition and Health, Croatia

  13. S.I. Odriozola, F.R. Soliva, J.T. Hernández, B.O. Martín, Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem. 112, 258–266 (2009)

    Article  Google Scholar 

  14. S. Toepfl, V. Heinz, Pulsed electric field assisted extraction—a case study. Nonthermal Process. Technol. Food 45, 190–200 (2011)

    Article  Google Scholar 

  15. Q.A. Vallverdú, S.I. Odriozola, O.G. Oms, R.M. Lamuela, M.P. Elez, B.O. Martín, Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem. 60, 9667–9672 (2012)

    Article  Google Scholar 

  16. A. Shohael, M. Ali, K. Yu, E. Hahn, R. Islam, K. Paek, Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem. 41, 1179–1185 (2006)

    Article  CAS  Google Scholar 

  17. N. Grimi, N.I. Lebovka, E. Vorobiev, J. Vaxelaire, Effect of a pulsed electric field treatment on expression behavior and juice quality of Chardonnay grape. Food Biophys. 4, 191–198 (2009)

    Article  Google Scholar 

  18. M. Abenoza, M. Benito, G. Saldaña, I. Álvarez, J. Raso, A.C. Sánchez-Gimeno, Effects of pulsed electric field on yield extraction and quality of olive oil. Food Bioprocess Technol. 6, 1367–1373 (2013)

    Article  Google Scholar 

  19. S. Asavasanti, S. Ersus, W. Ristenpart, P. Stroeve, D.M. Barrett, Critical electric field strengths of onion tissues treated by pulsed electric fields. J. Food Sci. 75, E433–E443 (2010)

    Article  CAS  Google Scholar 

  20. A. Angersbach, V. Heinz, D. Knorr, Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol. Prog. 15, 753–762 (1999)

    Article  CAS  Google Scholar 

  21. D. Knorr, A. Angersbach, Impact of high-intensity electric field pulses on plant membrane permeabilization. Trends Food Sci. Technol. 9, 185–191 (1998)

    Article  CAS  Google Scholar 

  22. O.B. Ade, A. Angersbach, N. Eshtiaghi, D. Knorr, Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innov. Food Sci. Emerg. Technol. 1, 203–209 (2000)

    Article  Google Scholar 

  23. N. Lebovka, M. Bazhal, E. Vorobiev, Estimation of characteristic damage time of food materials in pulsed-electric fields. J. Food Eng. 54, 337–346 (2002)

    Article  Google Scholar 

  24. G. Agati, G. Stefano, S. Biricolti, M. Tattini, Mesophyll distribution of antioxidant flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann. Bot. 104, 853–861 (2009)

    Article  CAS  Google Scholar 

  25. E. Puértolas, E. Luengo, I. Álvarez, J. Raso, Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications. Annu. Rev. Food Sci. Technol. 3, 263–282 (2012)

    Article  Google Scholar 

  26. M. Fincan, P. Dejmek, In situ visualization of the effect of a pulsed electric field on plant tissue. J. Food Eng. 55, 223–230 (2002)

    Article  Google Scholar 

  27. Pataro G, Ferrari G, Donsì F (2011) In: J Markoš (ed) Mass Transfer in Chemical Engineering Processes, Croatia

  28. Y. Numata, H. Tanaka, Quantitative analysis of quercetin using Raman spectroscopy. Food Chem. 126, 751–755 (2011)

    Article  CAS  Google Scholar 

  29. J. Cornard, J. Merlin, A. Boudet, L. Vrielynck, Structural study of quercetin by vibrational and electronic spectroscopies combined with semiempirical calculations. Biospectroscopy 3, 183–193 (1997)

    Article  CAS  Google Scholar 

  30. M.Z. Hussein, S.H. Al Ali, Z. Zainal, M.N. Hakim, Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent. Int. J. Nanomed. 6, 1373 (2011)

    Article  CAS  Google Scholar 

  31. N. Buchner, A. Krumbein, S. Rohn, L.W. Kroh, Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun. Mass Spectrom. 20, 3229–3235 (2006)

    Article  CAS  Google Scholar 

  32. E. Luengo, I. Álvarez, J. Raso, Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emer. Technol. 17, 79–84 (2013)

    Article  CAS  Google Scholar 

  33. P. Zafrilla, F. Ferreres, F.A. Tomas-Barberan, Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J. Agric. Food Chem. 49, 3651–3655 (2001)

    Article  CAS  Google Scholar 

  34. Z. Jurasekova, A. Torreggiani, M. Tamba, C.S. Sanchez, R.J. Garcia, Raman and surface-enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: evidence of structural changing processes in aqueous solution and on metal nanoparticles. J. Mol. Struct. 918, 129–137 (2009)

    Article  CAS  Google Scholar 

  35. M. Careri, L. Elviri, A. Mangia, M. Musci, Spectrophotometric and coulometric detection in the high-performance liquid chromatography of flavonoids and optimization of sample treatment for the determination of quercetin in orange juice. J. Chromatogr. A 881, 449–460 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gracefully thank Director, Central Scientific Instruments Organisation for providing infrastructural facilities. Also, authors extend their sincere appreciation to Jaswant Singh for the valuable assistance on PEF system.

Compliance with Ethics Requirements

Vasudha Bansal declares that she has received the grant of senior research fellowship from University Grants Commission, New Delhi.

Anupma Sharma declares that she has no conflict of interest.

C Ghanshyam declares that he has no conflict of interest.

M L Singla declares that he has no conflict of interest.

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Singla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, V., Sharma, A., Ghanshyam, C. et al. Optimization and characterization of pulsed electric field parameters for extraction of quercetin and ellagic acid in emblica officinalis juice. Food Measure 8, 225–233 (2014). https://doi.org/10.1007/s11694-014-9189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-014-9189-0

Keywords

Navigation