Skip to main content

Advertisement

Log in

Determining optimal wavebands using genetic algorithm for detection of internal insect infestation in tart cherry

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

This paper reports the results of waveband selection for detecting internal insect infestation in tart cherries as a precursor to development of a dedicated multispectral vision system. A genetic algorithm (GA) approach was applied on hyperspectral transmittance images (580–980 nm) and reflectance spectral data (590–1,550 nm) acquired from both intact and infested tart cherries. The GA analysis indicates that the ability of using transmittance imaging approach for detecting internal insect infestation in tart cherries would be limited. According to the GA analysis on the reflectance spectra, visible wavelengths were of less importance than NIR wavelengths for the purpose of distinguishing intact cherries from infested ones. The PLSDA results indicate that models built with three or four GA selected wavelength regions gave similar classification accuracy to the model built with full wavelength region, which demonstrates the efficiency of the GA variable selection procedure. However, due to the stochastic nature of the GA, the efficiency of using these wavebands in a multispectral vision system needs to be verified in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.H. Howitt, Plum curculio. Fruit IPM fact sheet. http://web1.msue.msu.edu/vanburen/plumcurc.htm, Accessed in June 2007

  2. T.F. Schatzki, T.A. Fine, Cereal Chem. 65, 233–239 (1988)

    Google Scholar 

  3. P.M. Keagy, T.F. Schatzki, Cereal Chem. 70, 696–700 (1993)

    Google Scholar 

  4. C. Karunakaran, D.S. Jayas, N.D.G. White, Trans. ASAE 46, 739–745 (2003)

    Google Scholar 

  5. T.F. Schatzki, R.P. Haff, R. Young, I. Can, L.C. Lee, N. Toyofuku, Trans. ASAE 40, 1407–1415 (1997)

    Google Scholar 

  6. J. Lammertyn, T. Dresselaers, P. Van Hecke, P. Jancsok, M. Eevers, B.M. Nicolai, Imaging 21, 805–815 (2003)

    CAS  Google Scholar 

  7. J. Hansen, D.W. Schlaman, R.P. Haff, W.L. Yee, J. Entomol. Sci. 40, 255–262 (2005)

    Google Scholar 

  8. C. Ridgeway, J. Chambers, J. Near Infrared Spectrosc. 6, 115–119 (1998)

    Google Scholar 

  9. C. Ridgway, R. Davies, J. Chambers, An ASAE Meeting Presentation, Paper Number: 01-3056 (2001)

  10. E. Davies, J. Chambers, C. Ridgway, Measure Sci. Technol. 13(12), 2053–2061 (2002)

    Article  CAS  Google Scholar 

  11. S. Ashaghathra, P. Weckler, J. Solie, M. Stone, A. Wayadande. An ASAE Meeting Presentation, Paper Number: 073045 (2007)

  12. J. Qin, R. Lu, Trans. ASAE 48(5), 1963–1970 (2005)

    Google Scholar 

  13. J. Xing, W. Saeys, J. De Baerdemaeker, Comput. Electron. Agric. 56(1), 1–13 (2007)

    Article  Google Scholar 

  14. J. Qin, R. Lu, Appl. Spectrosc. 61(4), 388–396 (2007)

    Article  CAS  Google Scholar 

  15. O. Kleynen, V. Leemans, M.F. Destain, Postharvest Biol. Technol. 30, 221–232 (2003)

    Article  Google Scholar 

  16. X.B. Zou, J.W. Zhao, Y.X. Li, Vib. Spectrosc 44(2), 220–227 (2007)

    Article  CAS  Google Scholar 

  17. R.M. Jarvis, R. Goodacre, Bioinformatics 21(7), 860–868 (2005)

    Article  CAS  Google Scholar 

  18. R. Leardi, M.B. Seasholtz, R.J. Pell, Anal. Chim. Acta 461, 189–200 (2002)

    Article  CAS  Google Scholar 

  19. G.P. Krivoshiev, R.P. Chalucova, M.I. Moukarev, Lebensm. Wiss. Technol. 33, 344–353 (2000)

    Article  CAS  Google Scholar 

  20. D. Broadhurst, R. Goodacre, A. Jones, J.J. Rowland, D.B. Kell, Anal. Chim. Acta 348, 71–86 (1997)

    Article  CAS  Google Scholar 

  21. C.S. Soh, K.M. Ong, P. Raveendran, in Proceedings of the IEEE, (2005), pp. 1178–1181

  22. PLStoolbox manual, Eigenvector.

Download references

Acknowledgements

The authors would like to thank the financial support of USDA-CSREES; Integrated Research, Education and Extension Competitive Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, J., Guyer, D., Ariana, D. et al. Determining optimal wavebands using genetic algorithm for detection of internal insect infestation in tart cherry. Sens. & Instrumen. Food Qual. 2, 161–167 (2008). https://doi.org/10.1007/s11694-008-9047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-008-9047-z

Keywords

Navigation