Advertisement

Hyperspectral imaging for the investigation of quality deterioration in sliced mushrooms (Agaricus bisporus) during storage

  • A. A. GowenEmail author
  • C. P. O’Donnell
  • M. Taghizadeh
  • E. Gaston
  • A. O’Gorman
  • P. J. Cullen
  • J. M. Frias
  • C. Esquerre
  • G. Downey
Original Paper

Abstract

In this study, the potential application of hyperspectral imaging (HSI) for quality prediction of white mushroom slices during storage at 4 °C and 15 °C was investigated. Mushroom slice quality was measured in terms of moisture content, colour (CIE Lightness, L* and yellowness, b*) and texture (hardness, H and chewiness, Ch). Hyperspectral images were obtained using a pushbroom line-scanning HSI instrument, operating in the wavelength range of 400–1,000 nm with spectroscopic resolution of 5 nm. Multiple linear regression (MLR) and Principal Component Regression (PCR) models were developed to investigate the relationship between reflectance and the various quality parameters measured. 20 optimal wavelengths for quality prediction were selected after performing an exhaustive search for the best subsets of predictor variables on a calibration set of 84 samples. PCR applied to the set of optimal wavelengths gave the best performance as compared to MLR and PCR on the entire wavelength range. When applied to an independent validation set of samples, PCR models developed on the calibration set were capable of predicting moisture content with RMSEP of 0.74% w.b. and R 2 of 0.75, L* with RMSEP of 0.47 and R 2 of 0.95, b* with RMSEP of 0.66 and R 2 of 0.75, H with RMSEP of 0.49 N and R 2 of 0.77 and Ch with RMSEP of 0.27 N and R 2 of 0.72. Virtual images showing the distribution of moisture content on the mushroom surface were generated from the estimated PCR model. Results from this study could be used for the development of a non-destructive monitoring system for prediction of sliced mushroom quality.

Keywords

Mushroom Slice Agaricus Bisporus Hyperspectral 

Notes

Acknowledgements

The authors would like to thank Helen Grogan and Ted Cormican from the Teagasc Research Station at Kinsealy, Dublin, for production of mushrooms and advice on mushroom handling, and would like to acknowledge the funding of the Irish Government Department of Agriculture and Food under the Food Institutional Research Measure (FIRM).

References

  1. 1.
    A.F.H. Goetz, G. Vane, T.E. Solomon, B.N. Rock, Imaging spectrometry for earth remote sensing. Science 228, 1147–1153 (1985)CrossRefGoogle Scholar
  2. 2.
    K.S. Wood, A.M. Gulian, G.G. Fritz, D. VanVechten, A QVD detector for focal plane hyperspectral imaging in astronomy. Bull. Am. Astron. Soc. 34, 1241 (2002)Google Scholar
  3. 3.
    E. Hege, D. O’Connell, W. Johnson, S. Basty, E. Dereniak, Hyperspectral imaging for astronomy and space surveillance. Proc. SPIE 5159, 380–391 (2003)CrossRefGoogle Scholar
  4. 4.
    Y. Uno, S. Prasher, R. Lacroix, P. Goel, Y. Karimi, A. Viau, R. Patel, Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput. Electron. Agric. 47(2), 149–161 (2005)CrossRefGoogle Scholar
  5. 5.
    V. Smail, A. Fritz, D. Wetzel, Chemical imaging of intact seeds with NIR focal plane array assists plant breeding. Vib. Spectrosc. 42(2), 215–221 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, K. Oda, Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J. Photogr. Remote Sens. 62(1), 2–12 (2007)CrossRefGoogle Scholar
  7. 7.
    R.C. Lyon, D.S. Lester, E.N. Lewis, E. Lee, L.X. Yu, E.H. Jefferson, A.S. Hussain, Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity. AAPS PharmSciTech. 3(3), 17 (2002)CrossRefGoogle Scholar
  8. 8.
    O. Rodionova, L. Houmøller, A. Pomerantsev, P. Geladi, J. Burger, V. Dorofeyev, A. Arzamastsev, NIR spectrometry for counterfeit drug detection: a feasibility study. Anal. Chim. Acta 549(1–2), 151–158 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal. Chim. Acta 535(1–2), 79–87 (2005)CrossRefGoogle Scholar
  10. 10.
    A.A. Gowen, C.P. O’Donnell, P.J. Cullen, G. Downey, J.M. Frias, Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007)CrossRefGoogle Scholar
  11. 11.
    M.S. Kim, Y.R. Chen, P.M. Mehl, Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. ASAE 44(3), 721–729 (2001)Google Scholar
  12. 12.
    R.F. Lu, Y.K. Peng, Hyperspectral scattering for assessing peach fruit firmness. Biosyst. Eng. 93(2), 161–171 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Ferris, R. Lawhead, E. Dickman, N. Holtzapple, J. Miller, S. Grogan, S. Bambot, A. Agrawal, M. Faupel, Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J. Low Genit. Tract Dis. 5(2), 65–72 (2001)CrossRefGoogle Scholar
  14. 14.
    D. Kellicut, J. Weiswasser, S. Arora, J. Freeman, R. Lew, C. Shuman, J. Mansfield, A. Sidawy, Emerging technology: hyperspectral imaging. Perspect. Vasc. Surg. Endovasc. Ther. 16(1), 53–57 (2004)CrossRefGoogle Scholar
  15. 15.
    G. Zheng, Y. Chen, X. Intes, B. Chance, J.D. Glickson, Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection. J. Porphyrins Phthalocyanines 8(9), 1106–1117 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Xing, W. Saeys, J. De Baerdemaeker, Combination of chemometric tools and image processing for bruise detection on apples. Comput. Electron. Agric. 56(1), 1–13 (2007)CrossRefGoogle Scholar
  17. 17.
    M.S. Kim, A.M. Lefcourt, K. Chao, Y.R. Chen, I. Kim, D.E. Chan, Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging. Trans. ASAE 45(6), 2027–2037 (2002)Google Scholar
  18. 18.
    K.M. Kim, J.A. Ko, J.S. Lee, H.J. Park, M.A. Hanna, Effect of modified packaging on the shelf-life of coated, whole and sliced mushrooms. LWT 39, 364–371 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Brennan, G. Le Port, R. Gormley, Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. LWT 33, 285–289 (2000)Google Scholar
  20. 20.
    M. Brennan, R. Gormley, Extending the shelf life of fresh sliced mushrooms. Teagasc food centre. Report no 4196 (1998)Google Scholar
  21. 21.
    P.H. Heinemann, R. Hughes, C.T. Morrow, H.J. Sommer III, R. Beelman, P.J. Wuest, Grading of mushrooms using a machine vision system. Trans. Am. Soc. Agric. Eng. 37(5), 1671–1677 (1994)Google Scholar
  22. 22.
    E. González-Fandos, A.S. Jiménez, V.T. Pardo, Quality and shelf life of packaged fresh sliced mushrooms stored at two different temperatures. Agric. Food Sci. 15, 414–422 (2006)CrossRefGoogle Scholar
  23. 23.
    T.R. Gormley, L. O’Sullivan, Use of a simple reflectometer to test mushroom quality. Mushroom J. 34, 344–346 (1975)Google Scholar
  24. 24.
    T.R. Gormley, C. McCanna, Prepackaging and shelf life of mushrooms. Ir. J. Agric. Res. 6(2), 255–265 (1967)Google Scholar
  25. 25.
    M. Brennan, G. Le Port, R. Gormley, Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. LWT 33(4), 285–289 (2000)Google Scholar
  26. 26.
    S. Roy, R.C. Anantheswaran, J.S. Shenk, M.O. Westerhaus, R.B. Beelman, Determination of moisture content of mushrooms by Vis – NIR spectroscopy. J. Sci. Food Agric. 63, 355–360 (1993)CrossRefGoogle Scholar
  27. 27.
    J.G. Van de Vooren, G. Polder, G.W.A.M. van der Heijden, Identification of mushroom cultivars using image analysis. Trans. ASAE 35, 347–350 (1992)Google Scholar
  28. 28.
    T. Vizhanyo, J. Felfoldi, Enhancing colour differences in images of diseased mushrooms. Comp. Electron. Agric. 26, 187–198 (2000)CrossRefGoogle Scholar
  29. 29.
    R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org (2007)
  30. 30.
  31. 31.
    B.D. Fekedulegn, J.J. Colbert, R.R. Hicks, M.E. Schuckers, Coping with Multicollinearity: an example on application of principal components regression in dendroecology, (U.S. Department of Agriculture, Newton Square, PA). Forest Service, Northeastern Research Station (Station ID: RP-NE-721), 43 (2002) http://www.treesearch.fs.fed.us/pubs/4750
  32. 32.
  33. 33.
  34. 34.
    R. Bro, A. Rinnan, N. Faber, Standard error of prediction for multilinear PLS. 2. Practical implementation in fluorescence spectroscopy. Chemometr. Intell. Lab. Syst. 75, 69–76 (2005)Google Scholar
  35. 35.
    P. Geladi, D. McDougel, H. Martens, Linearization and scatter correction for near infrared reflectance spectra of meat. Appl. Spectrosc. 39, 491–500 (1985)CrossRefGoogle Scholar
  36. 36.
    S. Roy, R.C. Anantheswaran, R.B. Beelman, Sorbitol increases the shelf life of fresh mushrooms stored in conventional packages. J. Food Sci. 60, 1254 (1995)CrossRefGoogle Scholar
  37. 37.
    F.M. Sogandares, E.S. Fry, Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements. Appl. Opt. 36, 8699–8709 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. A. Gowen
    • 1
    Email author
  • C. P. O’Donnell
    • 1
  • M. Taghizadeh
    • 1
  • E. Gaston
    • 2
  • A. O’Gorman
    • 2
  • P. J. Cullen
    • 2
  • J. M. Frias
    • 2
  • C. Esquerre
    • 3
  • G. Downey
    • 3
  1. 1.Biosystems Engineering, School of Agriculture, Food Science and Veterinary MedicineUniversity College DublinDublin 4Ireland
  2. 2.School of Food Science and Environmental HealthDublin Institute of TechnologyDublin 1Ireland
  3. 3.Teagasc Ashtown Food Research CentreAshtown, Dublin 15Ireland

Personalised recommendations