A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates

  • Lili He
  • Yang Liu
  • Mengshi LinEmail author
  • Joseph Awika
  • David R. Ledoux
  • Hao Li
  • Azlin Mustapha
Original Paper


Vibrational spectroscopic characteristics of melamine, cyanuric acid, and melamine cyanurate were measured using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanosubstrates. Trace amounts of melamine and its analogues (cyanuric acid and melamine cyanurate) were characterized and quantified quickly and accurately by SERS in combination with partial least squares (PLS) analysis. Based on the relationship between the Raman intensity of the most prominent peak at around 676 cm−1 and log values of melamine concentrations, the limit of detection (LOD) of SERS for melamine was estimated to be 2.6 × 10−7 mol L−1 (∼33 ppb). An approximately 3 × 104 fold of enhancement factor for SERS signals of melamine on gold nanosubstrates was obtained. This result was based upon the comparison of the peak at around 676 cm−1 in the SERS spectra with that of normal Raman spectra of melamine in aqueous solutions. SERS spectra of cyanuric acid acquired from its solid form differ significantly from this compound in an aqueous solution, indicating a possible keto-enol isomerization reaction of cyanuric acid in water. When equal amounts of melamine and cyanuric acid were added together, spoke-like crystals of melamine cyanurate formed instantly, which could be measured and characterized by SERS. This study demonstrates that SERS could provide a fast and ultra-sensitive tool for detection and characterization of melamine and its derivative compounds in aqueous solutions.


Melamine Cyanuric acid Melamine cyanurate SERS Gold nanosubstrate 



Special thanks are given to Dr. Barbara Rasco (Ph.D., JD) in the Department of Food Science at Washington State University for her kind review of this study.


  1. 1.
    MSNBC. Tainted food killed 224 pets in latest tally. (2007)
  2. 2.
    T. Sugita, H. Ishiwata, K. Yoshihira, Food Addit. Contam. 7, 21 (1990)Google Scholar
  3. 3.
    C.A. Brown, K.S. Jeong, R.H. Poppenga et al., J. Vet. Diagn. Invest. 19, 525 (2007)Google Scholar
  4. 4.
    L.M.A. Perdigao, N.R. Champness, P.H. Beton, Chem. Commun. 538 (2006)Google Scholar
  5. 5.
    W. Yi, W. Bei, Q.G. Wang, J. Crystallogr. Spectrosc. Res. 20, 79 (1990)CrossRefGoogle Scholar
  6. 6.
    M. Hostetler. Melamine risk assessment. (2007), p. 37
  7. 7.
    T. Sugita, H. Ishiwata, K. Yoshihira, A. Maekawa, Bull. Environ. Contam. Toxicol. 44, 567 (1990)CrossRefGoogle Scholar
  8. 8.
    J.V. Sancho, M. Ibanez, S. Grimalt, O.J. Pozo, F. Hernandez, Anal Chim Acta 530, 237 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys-Condens. Matter. 14, R597 (2002)CrossRefGoogle Scholar
  10. 10.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957 (1999)CrossRefGoogle Scholar
  11. 11.
    E.B. Hanlon, R. Manoharan, T.W. Koo et al., Phys. Med. Biol. 45, R1 (2000)CrossRefGoogle Scholar
  12. 12.
    K. Kneipp, A.S. Haka, H. Kneipp et al., Appl. Spectrosc. 56, 150 (2002)CrossRefGoogle Scholar
  13. 13.
    C.L. Haynes, A.D. McFarland, R.P. Van Duyne, Anal. Chem. 77, 338a (2005)CrossRefGoogle Scholar
  14. 14.
    G.B. Seifer, Russ. J. Coord. Chem. 28, 301 (2002)CrossRefGoogle Scholar
  15. 15.
    H. Martens, T. Naes, Multivariate Calibration (John Wiley & Sons, Inc., New York, 1986)Google Scholar
  16. 16.
    M. Lin, A.G. Cavinato, Y. Huang, B.A. Rasco, Food Res. Int. 36, 761 (2003)CrossRefGoogle Scholar
  17. 17.
    E. Koglin, B.J. Kip, R.J. Meier, J. Phys. Chem. 100, 5078 (1996)CrossRefGoogle Scholar
  18. 18.
    D.M. Lewis, Adv. Colour Sci. Technol. 4, 59 (2001)Google Scholar
  19. 19.
    M.K. Marchewka, Mater. Lett. 58, 843 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Ito, Bull. Chem. Soc. Jpn. 26, 339 (1953)CrossRefGoogle Scholar
  21. 21.
    X.Q. Liang, W.X. Zheng, N.B. Wong, J.S. Li, A.M. Tian, J. Mol. Struct-Theochem. 672, 151 (2004)CrossRefGoogle Scholar
  22. 22.
    X.Q. Liang, X.M. Pu, H.W. Zhou, N.B. Wong, A.N. Tian, J. Mol. Struct-Theochem. 816, 125 (2007)CrossRefGoogle Scholar
  23. 23.
    C.H. Tseng, C.K. Mann, T.J. Vickers, Appl. Spectrosc. 48, 535 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lili He
    • 1
  • Yang Liu
    • 1
  • Mengshi Lin
    • 1
    Email author
  • Joseph Awika
    • 1
  • David R. Ledoux
    • 2
  • Hao Li
    • 3
  • Azlin Mustapha
    • 1
  1. 1.Food Science Program, Division of Food Systems & BioengineeringUniversity of MissouriColumbiaUSA
  2. 2.Department of Animal SciencesUniversity of MissouriColumbiaUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations