Skip to main content
Log in

Evaluation of W-Rh permanent modifier for lead determination in sugar by graphite furnace atomic absorption spectrometry

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

An alternative procedure that improves the performance of graphite atomizers for the determination of Pb in sugar by electrothermal atomic absorption spectrometry is described. The procedure is based on the injection of 10 μl of an acidified aqueous solution containing 8% w/v sugar and 0.2% v/v HNO3 into integrated graphite platforms. Either transversely (THGA) as well as longitudinally heated graphite atomizers (LHGA) were evaluated by using conventional co-injection of 0.03% Pd + 0.05% Mg(NO3)2 or thermally treated platforms with 250 μg W + 200 μg Rh and co-injection of 5 μg l−1 Rh solution. With W-Rh under the same analytical conditions, the lifetimes of THGA and LHGA reached up to 1110 and 900 firings, respectively. With Pd + Mg the LHGA tube lifetime was limited to approximately 500 firings, but for THGA up to 1020 firings were made with a single tube. Characteristic masses were 11 and 29 pg Pb for LHGA and THGA, respectively. Detection limits (3 s) based on sugar blank solution and on integrated absorbance were 5.0 mg kg−1 with LHGA and 9.3 mg kg−1 Pb for THGA. In general, the coefficients of variation of 20 consecutive measurements of a solution containing 50 μg l−1 Pb were lower than 5%. The obtained detection limits are in consonance with the Codex Alimentarius recommendation for the maximum Pb content in the sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention, Preventing Lead Poisoning in Young Children, US Department of Health and Human Services, Atlanta, GA. (1991)

  2. Food Chemical Codex, FCC IV, General Test & Assays, 4th edn. (1996), pp. 763–765

  3. N.J. Miller-Ihli, F.E. Greene, At. Spectrosc. 14, 85–89 (1993)

    CAS  Google Scholar 

  4. E.C. Lima, F.J. Krug, M.A.Z. Arruda, Spectrochim. Acta B 53, 601–611 (1998)

    Article  Google Scholar 

  5. W. Slavin, D.C. Manning, G.R. Carnrick, Atom. Spectrosc. 2(5), 137–145 (1981)

    CAS  Google Scholar 

  6. A.B. Volynsky, J. Anal. Chem. 58(10), 905–921 (2003)

    Article  Google Scholar 

  7. D.L. Tsalev, V.I. Slaveykovaa, L. Lampugnanib, A. D’Ulivob, R. Georgievac, Spectrochim. Acta B 55, 473–490 (2000)

    Article  Google Scholar 

  8. A.B. Volynsky, J. Anal. Chem. 59(6), 502–520 (2004)

    Article  Google Scholar 

  9. H.M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch, B. Welz, Spectrochim. Acta B 57, 1835–1853 (2002)

    Article  Google Scholar 

  10. D.L. Tsalev, V.I. Slaveykova, Spectr. Lett. 25, 221–238 (1992)

    Article  CAS  Google Scholar 

  11. E. Bulska, W. Jedral, J. Anal. At. Spectrom. 10, 49–53 (1995)

    Article  CAS  Google Scholar 

  12. A.B. Volynsky, Spectrochim. Acta B 53, 1607–1645 (1998)

    Article  Google Scholar 

  13. V.I. Slaveykova, D.L. Tsalev, Anal. Lett. 23, 1921–1937 (1990)

    Google Scholar 

  14. N.M. Morris, M.A. Clarke, V.W. Tripp, F.G. Carpenter, J. Agric. Food Chem. 24, 45–47 (1976)

    Article  CAS  Google Scholar 

  15. N.C. Miller-Ihli, J. AOAC Int. 77(5), 1288–1292 (1994)

    CAS  Google Scholar 

  16. N.C. Miller-Ihli, J. Agric. Food Chem. 43, 923–927 (1995)

    Article  CAS  Google Scholar 

  17. J. Leblebici, M. Volkan, J. Agric. Food Chem. 46, 173–177 (1998)

    Article  CAS  Google Scholar 

  18. E.C. Lima, F.J. Krug and K.W. Jackson, Spectrochim. Acta B 53, 1791–1804 (1998)

    Article  Google Scholar 

  19. D. Santos Jr, F. Barbosa Jr, A.C. Tomazelli, F.J. Krug, J.A. Nóbrega, M.A.Z. Arruda, Anal. Bioanal. Chem. 373, 183–189 (2002)

    Article  CAS  Google Scholar 

  20. R.A. Zanão, F. Barbosa Jr, S.S. Souza, F.J. Krug, A.L. Abdalla, Spectrochim. Acta B 57, 291–301 (2002)

    Article  Google Scholar 

  21. V.M.C. Dias, A.S.B. Cardoso, Food Addit. Contam. 23(5), 479–483 (2006)

    Article  CAS  Google Scholar 

  22. C.J. Rademeyer, B. Radziuk, N. Romanova, Y. Thomassen, P. Tittarelli, J. Anal. At. Spectrom. 12, 81–84 (1997)

    Article  CAS  Google Scholar 

  23. D.L. Styris, in Modifiers in Electrothermal Atomic Absorption Spectrometry, ed by K.W. Jackson. Electrothermal Atomization for Analytical Atomic Spectrometry (Wiley, Chichester, 1999), pp. 310–357

  24. K.W. Jackson, Electrothermal Atomization for Analytical Atomic Spectrometry (Wiley, Chichester, 1999), pp. 310–357

    Google Scholar 

  25. Commission on Spectrochemical and Other Optical Procedures for Analysis, Nomenclature, Symbols, Units and their Usage in Spectrochemical Analysis II. Data interpretation, Spectrochim. Acta B 33, 241–248 (1978)

    Google Scholar 

  26. W. Slavin, G.R. Carnrick, Spectrochim. Acta B. 39, 271–282 (1984)

    Article  Google Scholar 

  27. The THGA Graphite Furnace, Techniques and Recommended Conditions (Perkin-Elmer, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dário Santos Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, P.F., Santos, D., Roldan, P. et al. Evaluation of W-Rh permanent modifier for lead determination in sugar by graphite furnace atomic absorption spectrometry. Sens. & Instrumen. Food Qual. 1, 176–182 (2007). https://doi.org/10.1007/s11694-007-9023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-007-9023-z

Keywords

Navigation