Skip to main content

Advertisement

Log in

Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Brain cancers demonstrate a complex metabolic behavior so as to adapt the external hypoxic environment and internal stress generated by reactive oxygen species. To survive in these stringent conditions, glioblastoma cells develop an antagonistic metabolic phenotype as compared to their predecessors, the astrocytes, thereby quenching the resources expected for nourishing the neurons. The complexity and cumulative effect of the large scale metabolic functioning of glioblastoma is mostly unexplored. In this study, we reconstruct a metabolic network comprising of pathways that are known to be deregulated in glioblastoma cells as compared to the astrocytes. The network, consisted of 147 genes encoding for enzymes performing 247 reactions distributed across five distinct model compartments, was then studied using constrained-based modeling approach by recreating the scenarios for astrocytes and glioblastoma, and validated with available experimental evidences. From our analysis, we predict that glycine requirement of the astrocytes are mostly fulfilled by the internal glycine–serine metabolism, whereas glioblastoma cells demand an external uptake of glycine to utilize it for glutathione production. Also, cystine and glucose were identified to be the major contributors to glioblastoma growth. We also proposed an extensive set of single and double lethal reaction knockouts, which were further perturbed to ascertain their role as probable chemotherapeutic targets. These simulation results suggested that, apart from targeting the reactions of central carbon metabolism, knockout of reactions belonging to the glycine–serine metabolism effectively reduce glioblastoma growth. The combinatorial targeting of glycine transporter with any other reaction belonging to glycine–serine metabolism proved lethal to glioblastoma growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anton K, Glod J (2014) An orchestrated response to tumor signals by macrophages and mesenchymal stem cells potentiates interleukin-6 secretion in glioblastoma. Cell Death Ther 1:2353–7817. doi:10.2478/cdth-2014-0001

    Article  Google Scholar 

  • Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerji A (2013) An attempt to construct a (general) mathematical framework to model biological “context-dependence”. Syst Synth Biol 7:221–227

    Article  PubMed Central  PubMed  Google Scholar 

  • Boada J, Roig T, Perez X, Gamez A, Bartrons R, Cascante M, Bermúdez J (2000) Cells overexpressing fructose-2, 6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. FEBS Lett 480:261–264

    Article  CAS  PubMed  Google Scholar 

  • Bouzier-Sore AK, Pellerin L (2013) Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 7:179. doi:10.3389/fncel.2013.00179

    Article  PubMed Central  PubMed  Google Scholar 

  • Brekke E, Walls AB, Norfeldt L, Schousboe A, Waagepetersen HS, Sonnewald U (2012) Direct measurement of backflux between oxaloacetate and fumarate following pyruvate carboxylation. Glia 60:147–158. doi:10.1002/glia.21265

    Article  PubMed  Google Scholar 

  • Burgess PK, Kulesa PM, Murray JD, Alvord EC Jr (1997) The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol 56:704–713

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan P et al (2012) The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res 72:5878–5888

    Article  CAS  PubMed  Google Scholar 

  • Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, Sontheimer H (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25:7101–7110. doi:10.1523/JNEUROSCI.5258-04.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Consortium U (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  Google Scholar 

  • Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213:73–88

    Article  CAS  PubMed  Google Scholar 

  • Deighton RF et al (2014) The proteomic response in glioblastoma in young patients. J Neurooncol 119:79–89. doi:10.1007/s11060-014-1474-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70:835–840

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • García-Colunga J, Miledi R (1999) Modulation of nicotinic acetylcholine receptors by strychnine. Proc Natl Acad Sci 96:4113–4118

    Article  PubMed Central  PubMed  Google Scholar 

  • Griguer CE, Oliva CR, Gillespie GY (2005) Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neurooncol 74:123–133. doi:10.1007/s11060-004-6404-6

    Article  CAS  PubMed  Google Scholar 

  • Guessous F et al (2013) Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 112:153–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hashimoto K (2010) Glycine transport inhibitors for the treatment of schizophrenia. Open Med Chem 4:10–19

    CAS  Google Scholar 

  • Hattingen E, Lanfermann H, Quick J, Franz K, Zanella FE, Pilatus U (2009) 1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. Magn Reson Mater Phys, Biol Med 22:33–41

    Article  CAS  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743. doi:10.1016/j.tins.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K (1977) Glioblastoma multiforme: morphology and biology. Acta Neurochir 42:5–32

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  • Jursky F, Nelson N (1995) Localization of glycine neurotransmitter transporter (GLYT2) reveals correlation with the distribution of glycine receptor. J Neurochem 64:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleihues P, Ohgaki H (2000) Phenotype vs genotype in the evolution of astrocytic brain tumors. Toxicol Pathol 28:164–170

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Gianchandani EP, Papin JA (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150

    Article  PubMed  Google Scholar 

  • Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF 3rd, Staunton JE, Jin X, Lee MS, Zimmermann GR, Borisy AA (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27:659–666

    Article  PubMed Central  PubMed  Google Scholar 

  • Maity A, Pore N, Lee J, Solomon D, O’Rourke DM (2000) Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 60:5879–5886

    CAS  PubMed  Google Scholar 

  • Mandonnet E, Pallud J, Clatz O, Taillandier L, Konukoglu E, Duffau H, Capelle L (2008) Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg Rev 31:263–269

    Article  PubMed  Google Scholar 

  • Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(Suppl 1):55–62. doi:10.1111/j.1471-4159.2009.06003.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marrif H, Juurlink BH (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J Neurosci Res 57:255–260

    Article  CAS  PubMed  Google Scholar 

  • Nicklas WJ, Browning ET (1978) Amino acid metabolism in glial cells: homeostatic regulation of intra-and extracellular milieu by C-6 glioma cells. J Neurochem 30:955–963

    Article  CAS  PubMed  Google Scholar 

  • Ogunrinu TA, Sontheimer H (2010) Hypoxia increases the dependence of glioma cells on glutathione. J Biol Chem 285:37716–37724. doi:10.1074/jbc.M110.161190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira-Ferrer L, Wellbrock J, Bartsch U, Penas EM, Hauschild J, Klokow M, Bokemeyer C, Fiedler W, Schuch G (2013) Combination therapy targeting integrins reduces glioblastoma tumor growth through antiangiogenic and direct antitumor activity and leads to activation of the pro-proliferative prolactin pathway. Mol Cancer 12:1–14

    Article  Google Scholar 

  • Oudard S et al (1996) High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer 74:839–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin D, Xu R, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci 91:10625–10629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pistollato F et al (2010) Hypoxia and succinate antagonize 2-deoxyglucose effects on glioblastoma. Biochem Pharmacol 80:1517–1527. doi:10.1016/j.bcp.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  • Prabhu A, Sarcar B, Kahali S, Yuan Z, Johnson JJ, Adam KP, Kensicki E, Chinnaiyan P (2014) Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. Cancer Res 74:787–796

    Article  CAS  PubMed  Google Scholar 

  • Raman K, Damaraju N, Joshi GK (2014) The organisational structure of protein networks: revisiting the centrality–lethality hypothesis. Syst Synth Biol 8:73–81

    Article  PubMed Central  PubMed  Google Scholar 

  • Resendis-Antonio O, Checa A, Encarnación S (2010) Modeling core metabolism in cancer cells: surveying the topology underlying the Warburg effect. PLoS ONE 5:e12383

    Article  PubMed Central  PubMed  Google Scholar 

  • Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

    Article  CAS  PubMed  Google Scholar 

  • Sahm F et al (2013) The endogenous tryptophan metabolite and NAD + precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73:3225–3234. doi:10.1158/0008-5472.CAN-12-3831

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger J et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6:1290–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard H, Schousboe A (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  CAS  PubMed  Google Scholar 

  • Swanson KR, Bridge C, Murray J, Alvord EC (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216:1–10

    Article  PubMed  Google Scholar 

  • Tracqui P, Cruywagen G, Woodward D, Bartoo G, Murray J, Alvord E (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28:17–31

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1103. doi:10.1126/science.1160809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang D-S, Mangin J-M, Moonen G, Rigo J-M, Legendre P (2006) Mechanisms for picrotoxin block of α2 homomeric glycine receptors. J Biol Chem 281:3841–3855

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787. doi:10.1073/pnas.0810199105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolf A, Agnihotri S, Guha A (2010) Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 1:552–577

    Article  PubMed  Google Scholar 

  • Ye Z-C, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction–mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine–glutamate exchange. J Neurosci 19:10767–10777

    CAS  PubMed  Google Scholar 

  • Zafra F, Gimenez C (1986) Characterization of glycine uptake in plasma membrane vesicles isolated from cultured glioblastoma cells. Brain Res 397:108–116

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y et al (2011) Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 286:32843–32853. doi:10.1074/jbc.M111.260935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Council of Scientific and Industrial Research, XII Five Year Plan Project “GENESIS” (BSC0121) and Department of Biotechnology, Government of India (Project Code: BT/PR13689/BID/07/363/2010) for providing financial support to perform this work. Abhishek Subramanian acknowledges the research fellowship provided by DBT-BINC fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Rup Sarkar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, R., Subramanian, A. & Sarkar, R.R. Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach. Syst Synth Biol 9, 159–177 (2015). https://doi.org/10.1007/s11693-015-9183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-015-9183-9

Keywords

Navigation