Skip to main content
Log in

Weighting schemes in metabolic graphs for identifying biochemical routes

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Metabolism forms an integral part of all cells and its study is important to understand the functioning of the system, to understand alterations that occur in disease state and hence for subsequent applications in drug discovery. Reconstruction of genome-scale metabolic graphs from genomics and other molecular or biochemical data is now feasible. Few methods have also been reported for inferring biochemical pathways from these networks. However, given the large scale and complex inter-connections in the networks, the problem of identifying biochemical routes is not trivial and some questions still remain open. In particular, how a given path is altered in perturbed conditions remains a difficult problem, warranting development of improved methods. Here we report a comparison of 6 different weighting schemes to derive node and edge weights for a metabolic graph, weights reflecting various kinetic, thermodynamic parameters as well as abundances inferred from transcriptome data. Using a network of 50 nodes and 107 edges of carbohydrate metabolism, we show that kinetic parameter derived weighting schemes \(\left[ {\left( {\frac{{K_{M}^{S} }}{{ K_{M}^{P } }}} \right){\text{ and }}\left( { \frac{{K_{M} }}{{K_{cat} }} } \right)} \right]\) fare best. However, these are limited by their extent of availability, highlighting the usefulness of omics data under such conditions. Interestingly, transcriptome derived weights yield paths with best scores, but are inadequate to discriminate the theoretical paths. The method is tested on a system of Escherichia coli stress response. The approach illustrated here is generic in nature and can be used in the analysis for metabolic network from any species and perhaps more importantly for comparing condition-specific networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña V, Ferreira C, Freire A, Moreno E (2011) Solving the maximum edge biclique packing problem on unbalanced bipartite graphs. Discret Appl Math. doi:10.1016/j.dam.2011.09.019

  • Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing networks in cell biology. Brief Bioinform 7(3):243–255

    Article  CAS  PubMed  Google Scholar 

  • Arita M (2012) From metabolic reactions to networks and pathways. Bact Mol Netw, Springer 804:93–106

    Article  CAS  Google Scholar 

  • Batenkov D (2011) Boosting productivity with the boost graph library. XRDS Crossroads ACM Mag Stud 17(3):31–32

    Article  Google Scholar 

  • Cornish-Bowden A, Cárdenas ML (2003) Metabolic analysis in drug design. C R Biol 326(5):509–515

    Article  CAS  PubMed  Google Scholar 

  • Croes D, Couche F, Wodak SJ, van Helden J (2005) Metabolic PathFinding: inferring relevant pathways in biochemical networks. Nucleic Acids Res 33(suppl 2):W326–W330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Croes D, Couche F, Wodak SJ, van Helden J (2006) Inferring meaningful pathways in weighted metabolic networks. J Mol Biol 356(1):222–236

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss JM, Zucker JD, Hood HM, Ocasio LR, Sachs MS, Galagan JE (2013) Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLoS Comput Biol 9(7):e1003126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flight MH (2010) Drug screening: shifting energy metabolism. Nat Rev Drug Discov 9(4):272

    Article  CAS  PubMed  Google Scholar 

  • Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345

    Article  Google Scholar 

  • Gleich DF (2009) Models and algorithms for pagerank sensitivity. Stanford University

  • Hawick KA (2011) Applying enumerative, spectral and hybrid graph analyses to biological network data. Small 15:16

    Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518):929–934

    Article  CAS  PubMed  Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl 1):S233–S240

    Article  PubMed  Google Scholar 

  • Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364

    PubMed Central  PubMed  Google Scholar 

  • Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151(3):693–706

    Article  CAS  PubMed  Google Scholar 

  • Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Theor Biol Med Model 3(1):42

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma’ayan A (2009) Insights into the organization of biochemical regulatory networks using graph theory analyses. J Biol Chem 284(9):5451–5455

    Article  PubMed  Google Scholar 

  • Mavrovouniotis ML (1990) Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36(10):1070–1082

    Article  CAS  PubMed  Google Scholar 

  • Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38(suppl 1):D750–D753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noirel J, Ow SY, Sanguinetti G, Jaramillo A, Wright PC (2008) Automated extraction of meaningful pathways from quantitative proteomics data. Brief Funct Genomic Proteomic 7(2):136–146

    Article  CAS  PubMed  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palsson B (2000) The challenges of in silico biology. Nat Biotechnol 18(11):1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Pitkänen E, Jouhten P, Rousu J (2009) Inferring branching pathways in genome-scale metabolic networks. BMC Syst Biol 3(1):103

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39(suppl 1):D670–D676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott MS, Perkins T, Bunnell S, Pepin F, Thomas DY, Hallett M (2005) Identifying regulatory subnetworks for a set of genes. Mol Cell Proteomics 4(5):683–692

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  Google Scholar 

  • Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277

    Article  CAS  PubMed  Google Scholar 

  • Verkhedkar KD, Raman K, Chandra NR, Vishveshwara S (2007) Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis. PLoS ONE 2(9):e881

    Article  PubMed Central  PubMed  Google Scholar 

  • Zien A, Kuffner R, Zimmer R, Lengauer T (2000) Analysis of gene expression data with pathway scores. Proceedings of the 8th international conference intelligent systems molecular biology (ISMB) 8:407–417

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Baloni, P., Vishveshwara, S. et al. Weighting schemes in metabolic graphs for identifying biochemical routes. Syst Synth Biol 8, 47–57 (2014). https://doi.org/10.1007/s11693-013-9128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-013-9128-0

Keywords

Navigation