Systems and Synthetic Biology

, Volume 7, Issue 3, pp 79–86 | Cite as

Design-driven, multi-use research agendas to enable applied synthetic biology for global health

Research Article


Many of the synthetic biological devices, pathways and systems that can be engineered are multi-use, in the sense that they could be used both for commercially-important applications and to help meet global health needs. The on-going development of models and simulation tools for assembling component parts into functionally-complex devices and systems will enable successful engineering with much less trial-and-error experimentation and laboratory infrastructure. As illustrations, I draw upon recent examples from my own work and the broader Keasling research group at the University of California Berkeley and the Joint BioEnergy Institute, of which I was formerly a part. By combining multi-use synthetic biology research agendas with advanced computer-aided design tool creation, it may be possible to more rapidly engineer safe and effective synthetic biology technologies that help address a wide range of global health problems.


Model-driven design and engineering Computer-aided design 



Computer-aided design


  1. American Chemical Society (2012) The discovery and development of penicillin. Accessed 25 Jan 2012
  2. Bennett G, Gilman N, Stavrianakis A, Rabinow P (2009) From synthetic biology to biohacking: are we prepared? Nat Biotechnol 27:1109–1111PubMedCrossRefGoogle Scholar
  3. Billi D, Wright DJ, Helm RF et al (2000) Engineering desiccation tolerance in Escherichia coli. Appl Environ Microbiol 66:1680–1684PubMedCrossRefGoogle Scholar
  4. Blanc V, Gil P, Bamas Jacques N et al (1997) Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4 dimethylamino l phenylalanine precursor of pristinamycin I. Mol Microbiol 23:191–202PubMedCrossRefGoogle Scholar
  5. Blount BA, Weenink T, Ellis T (2012) Construction of synthetic regulatory networks in yeast. FEBS Lett. doi:10.1016/j.febslet.2012.01.053
  6. Bokinsky G, Peralta-Yahya PP, George A et al (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA 108:19949–19954PubMedCrossRefGoogle Scholar
  7. Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503PubMedCrossRefGoogle Scholar
  8. Carothers JM, Goler JA, Kapoor Y et al (2010) Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity. Nucleic Acids Res 38:2736–2747PubMedCrossRefGoogle Scholar
  9. Carothers JM, Goler JA, Juminaga D, Keasling JD (2011) Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334:1716–1719PubMedCrossRefGoogle Scholar
  10. Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681PubMedCrossRefGoogle Scholar
  11. Chau PC (2002) Process control: a first course with MATLAB. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Chen J, Densmore D, Ham TS et al (2012) Device editor visual biological CAD canvas. J Biol Eng 6:1PubMedGoogle Scholar
  13. Dana GV, Kuiken T, Rejeski D, Snow AA (2012) Synthetic biology: four steps to avoid a synthetic-biology disaster. Nature 483:29. doi:10.1038/483029a PubMedCrossRefGoogle Scholar
  14. Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5-prime pyrophosphate removal. Nature 451:355–358. doi:10.1038/nature06475 PubMedCrossRefGoogle Scholar
  15. Dietrich JA, Fortman JL, Juminaga D, Keasling JD (2011) Microbial production of plant-derived pharmaceutical natural products through metabolic engineering: artemisinin and beyond. In: Tao J, Kazlauskas R (eds) Biocatalysis for green chemistry and chemical process development, Wiley, Hoboken, NJ, USAGoogle Scholar
  16. Duffy JL, Kirk BA, Wang L et al (2007) 4-Aminophenylalanine and 4-aminocyclohexylalanine derivatives as potent, selective, and orally bioavailable inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 17:2879–2885PubMedCrossRefGoogle Scholar
  17. Fleishman SJ, Whitehead TA, Ekiert DC et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816PubMedCrossRefGoogle Scholar
  18. Goikhman MY, Subbotina LI, Martynenkov AA et al (2011) Synthesis and optical properties of copolymers of 4-aminostyrene with the side styrylquinoline chromophore groups. Russ Chem Bull 60:295–303CrossRefGoogle Scholar
  19. Goler JA, Bramlett BW, Peccoud J (2008) Genetic design: rising above the sequence. Trends Biotechnol 26:538–544PubMedCrossRefGoogle Scholar
  20. Gostin LO (2007) Meeting basic survival needs of the world’s least healthy people: toward a framework convention on global health. Georget Law J 96:331–392Google Scholar
  21. Gutmann A, Wagner J (2010) New directions: the ethics of synthetic biology and emerging technologies. Presidential Commission for the Study of Bioethical Issues, Washington, DCGoogle Scholar
  22. Hazen RM, Griffin PL, Carothers JM, Szostak JW (2007) Functional information and the emergence of biocomplexity. Proc Natl Acad Sci 104:8574–8581PubMedCrossRefGoogle Scholar
  23. Hersch F (2012) Transforming health care: one SMS at a time? Transl Glob Health. Accessed 26 Dec 2012
  24. Hillson NJ, Rosengarten RD, Keasling JD (2011) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21Google Scholar
  25. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23. doi:10.1016/j.cell.2009.12.029 PubMedCrossRefGoogle Scholar
  26. Huo YX, Cho KM, Rivera JG et al (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–351PubMedCrossRefGoogle Scholar
  27. Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219:632–637PubMedCrossRefGoogle Scholar
  28. Juminaga D, Baidoo EE., Redding-Johanson AM et al. (2012) Modular engineering of l-tyrosine production in Escherichia coli. Appl Environ Microbiol 78(1):89–98. doi:10.1128/AEM.06017-11
  29. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355PubMedCrossRefGoogle Scholar
  30. Khatib F, Cooper S, Tyka MD et al (2011) Algorithm discovery by protein folding game players. Proc Natl Acad Sci 108:18949–18953PubMedCrossRefGoogle Scholar
  31. Koblentz GD (2009) Living weapons: biological warfare and international security. Cornell University Press, Ithaca, NYGoogle Scholar
  32. Koeppl H (2011) Design and analysis of bio-molecular circuits. Springer, BerlinCrossRefGoogle Scholar
  33. Lee SK, Chou H, Ham TS et al (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563PubMedCrossRefGoogle Scholar
  34. Marchetti E, Mazarin-Diop V, Chaumont J et al (2012) Conducting vaccine clinical trials in sub-Saharan Africa: operational challenges and lessons learned from the Meningitis Vaccine Project. VaccineGoogle Scholar
  35. Mead C, Conway L (1980) Introduction to VLSI systems. Addison-Wesley Reading, MAGoogle Scholar
  36. Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202. doi:10.1038/nrmicro2717 PubMedCrossRefGoogle Scholar
  37. Oye KA, Wellhausen R (2010) Synthetic biology: the technoscience and its societal consequences. Springer, Berlin, pp 121–140Google Scholar
  38. Peralta-Yahya PP, Ouellet M, Chan R et al (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedCrossRefGoogle Scholar
  39. Reid AB, Daffy JR, Stanley P, Buising KL (2010) Use of pristinamycin for infections by gram-positive bacteria: clinical experience at an Australian Hospital. Antimicrob Agents Chemother 54:3949–3952PubMedCrossRefGoogle Scholar
  40. Rezaie R, McGahan AM, Daar AS, Singer PA (2012) Innovative drugs and vaccines in China, India and Brazil. Nat Biotechnol 30:923–926PubMedCrossRefGoogle Scholar
  41. Rip A, Kemp RPM (1998) Technological change. In: Rayner S, Malone EL (eds) Human choice and climate change. Resources and Technology, vol II. Battelle Press, Columbus, Ohio, pp 327–399Google Scholar
  42. Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640 PubMedCrossRefGoogle Scholar
  43. Roose-Snyder B, Doyle MK (2009) The global health licensing program: a new model for humanitarian licensing at the university level. Am J Law Med 35:281–700PubMedGoogle Scholar
  44. Rosicrucian Egyptian Museum (2012) Rosicrucian Egyptian Museum Virtual Gallery. Brewery Scene Model (2000 B.C.E.). Accessed 16 July 2013
  45. Saltelli A, Ratto M, Andres T et al (2008) Global sensitivity analysis: the primer. Wiley, EnglandGoogle Scholar
  46. Sariaslani FS (2007) Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol 61:51–69PubMedCrossRefGoogle Scholar
  47. Shiue E, Prather KLJ (2012) Synthetic biology devices as tools for metabolic engineering. Biochem Eng J. doi:10.1016/j.bej.2012.04.006
  48. Steen EJ, Kang Y, Bokinsky G et al (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562PubMedCrossRefGoogle Scholar
  49. Towse A, Kettler H (2005) Advance price or purchase commitments to create markets for treatments for diseases of poverty: lessons from three policies. Bull World Health Organ 83:301–307PubMedGoogle Scholar
  50. Wagner CS, Brahmakulam I, Jackson B et al (2001) Science and technology collaboration: building capability in developing countries (No. RAND/MR-1357.0-WB). RAND Corp., Santa Monica, CAGoogle Scholar
  51. Westfall PJ, Pitera DJ, Lenihan JR et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci 109:E111–E118. doi:10.1073/pnas.1110740109 PubMedCrossRefGoogle Scholar
  52. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144. doi:10.1146/annurev.bioeng.10.061807.160524 PubMedCrossRefGoogle Scholar
  53. Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19:323–329Google Scholar
  54. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359. doi:10.1038/nbt.2149 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleUSA

Personalised recommendations