Skip to main content
Log in

Lysine overproducing Corynebacterium glutamicum is characterized by a robust linear combination of two optimal phenotypic states

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

A homoserine auxotroph strain of Corynebacterium glutamicum accumulates storage compound trehalose with lysine when limited by growth. Industrially lysine is produced from C. glutamicum through aspartate biosynthetic pathway, where enzymatic activity of aspartate kinase is allosterically controlled by the concerted feedback inhibition of threonine plus lysine. Ample threonine in the medium supports growth and inhibits lysine production (phenotype-I) and its complete absence leads to inhibition of growth in addition to accumulating lysine and trehalose (phenotype-II). In this work, we demonstrate that as threonine concentration becomes limiting, metabolic state of the cell shifts from maximizing growth (phenotype-I) to maximizing trehalose phenotype (phenotype-II) in a highly sensitive manner (with a Hill coefficient of 4). Trehalose formation was linked to lysine production through stoichiometry of the network. The study demonstrated that the net flux of the population was a linear combination of the two optimal phenotypic states, requiring only two experimental measurements to evaluate the flux distribution. The property of linear combination of two extreme phenotypes was robust for various medium conditions including varying batch time, initial glucose concentrations and medium osmolality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benjamin F, Christian T, Christian R, Jörn K, Ansgar P, Dirk Andreas W (2010) Adaptation of Corynebacterium glutamicum to salt-stress conditions. Proteomics 10(3):445–457

    Article  Google Scholar 

  • Chen N, Du J, Liu H, Xu QY (2009) Elementary mode analysis and metabolic flux analysis of l-glutamate biosynthesis by Corynebacterium glutamicum. Ann Microbiol 59(2):317–322

    Article  CAS  Google Scholar 

  • Cocaign BM, Lindley ND (1995) Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium glutamicum during growth on lactate, vol 17.3. Elsevier, Amsterdam

    Google Scholar 

  • Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277(31):28058–28064. doi:10.1074/jbc.M201691200

    Article  PubMed  CAS  Google Scholar 

  • de Graaf AA (2000) Metabolic flux analysis of Corynebacterium glutamicum. In: Schügerl KB, Bellgardt KH (ed) Bioreaction engineering, modelling and control. Springer, New york, pp 506–555

  • Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern J-L, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254(1):96–102

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97(10):5528–5533

    Article  PubMed  CAS  Google Scholar 

  • Edwards JS, Covert M, Palsson B (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4(3):133–140

    Article  PubMed  Google Scholar 

  • Eggeling L (1994) Biology of l-lysine overproduction by Corynebacterium glutamicum. Amino Acids 6(3):261–272

    Article  CAS  Google Scholar 

  • Eikmanns BJ, Eggeling L, Sahm H (1993) Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie Van Leeuwenhoek 64(2):145–163

    Article  PubMed  Google Scholar 

  • Gayen K, Venkatesh KV (2006) Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum. BMC Bioinform 7:445. doi:10.1186/1471-2105-7-445

    Article  Google Scholar 

  • Gayen K, Gupta M, Venkatesh KV (2007) Elementary mode analysis to study the preculturing effect on the metabolic state of Lactobacillus rhamnosus during growth on mixed substrates. In Silico Biology 7(2):123–139

    Google Scholar 

  • Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104(1–3):99–122

    Article  PubMed  CAS  Google Scholar 

  • Guillouet S, Engasser JM (1995a) Growth of Corynebacterium glutamicum in glucose-limited continuous cultures under high osmotic pressure. Influence of growth rate on the intracellular accumulation of proline, glutamate and trehalose. Appl Microbiol Biotechnol 44(3):496–500

    Article  CAS  Google Scholar 

  • Guillouet S, Engasser JM (1995b) Sodium and proline accumulation in Corynebacterium glutamicum as a response to an osmotic saline upshock. Appl Microbiol Biotechnol 43(2):315–320

    Article  CAS  Google Scholar 

  • Haverkorn van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ, Sauer U (2011) Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 7, Article number 477. doi:10.1038/msb.2011.9

  • Heermann R, Jung K (2004) Structural features and mechanisms for sensing high osmolarity in microorganisms. Curr Opin Microbiol 7(2):168–174. doi:10.1016/j.mib.2004.02.008

    Article  PubMed  CAS  Google Scholar 

  • Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420(6912):186–189

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330

    Article  PubMed  CAS  Google Scholar 

  • Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21(2):64–69

    Article  PubMed  CAS  Google Scholar 

  • Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769–1784. doi:10.1128/jb.186.6.1769-1784.2004

    Article  PubMed  Google Scholar 

  • Kromer JO, Wittmann C, Schroder H, Heinzle E (2006) Metabolic pathway analysis for rational design of l-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(4):353–369

    Article  PubMed  Google Scholar 

  • Llaneras F, Picó J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Morbach S, Kramer R (2003) Impact of transport processes in the osmotic response of Corynebacterium glutamicum. J Biotechnol 104(1–3):69–75. doi:10.1016/s0168-1656(03)00164-0

    Article  PubMed  CAS  Google Scholar 

  • Pachuski J, Fried B, Sherma J (2002) HPTLC analysis of amino acids in Biomphalaria glabrata infected with Schistosoma mansoni. J Liq Chromatogr Rel Technol 25(13–15):2345–2349. doi:10.1081/jlc-120014008

    CAS  Google Scholar 

  • Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22(8):400–405

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG, Venkatesh KV, Pidcock MK, Fell DA (2004) A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol Bioeng 88(5):601–612. doi:10.1002/bit.20273

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan D, Rajvanshi M, Venkatesh K (2010) Phenotypic characterization of Corynebacterium glutamicum using elementary modes towards synthesis of amino acids. Syst Synth Biol 4(4):281–291

    Article  PubMed  Google Scholar 

  • Rajvanshi M, Venkatesh K (2011) Phenotypic characterization of Corynebacterium glutamicum under osmotic stress conditions using elementary mode analysis. J Ind Microbiol Biotechnol 38(9):1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2(2):165–182

    Article  Google Scholar 

  • Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60. doi:10.1016/S0167-7799(98)01290-6

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Kamp A, Pachkov M (2007) Understanding the roadmap of metabolism by pathway analysis. In: Metabolomics. Method Mol Biol. Humana Press, Iotowa, pp 199–226

  • Schwartz J-M, Kanehisa M (2006) Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinform 7(1):186

    Article  Google Scholar 

  • Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 65(6):849–859

    PubMed  CAS  Google Scholar 

  • Skjerdal OT, Sletta H, Flenstad SG, Josefsen KD, Levine DW, Ellingsen TE (1995) Changes in cell volume, growth and respiration rate in response to hyperosmotic stress of NaCl, sucrose and glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol 43(6):1099–1106

    Article  CAS  Google Scholar 

  • Skjerdal OT, Sletta H, Flenstad SG, Josefsen KD, Levine DW, Ellingsen TE (1996) Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol 44(5):635–642

    Article  CAS  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420(6912):190–193

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252(5013):1675–1681. doi:10.1126/science.1904627

    Article  PubMed  CAS  Google Scholar 

  • Takac S, Calik G, Mavituna F, Dervakos G (1998) Metabolic flux distribution for the optimized production of l-glutamate. Enzyme Microb Technol 23(5):286–300

    Article  CAS  Google Scholar 

  • Tryfona T, Bustard MT (2005) Fermentative production of lysine by Corynebacterium glutamicum: transmembrane transport and metabolic flux analysis. Process Biochem 40(2):499–508. doi:10.1016/j.procbio.2004.01.037

    Article  CAS  Google Scholar 

  • Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149(Pt 7):1659–1673

    Article  PubMed  CAS  Google Scholar 

  • Vallino JJ (1991) Identification of branch point restrictions in microbial metabolism through metabolic flux analysis and local network perturbations. Thesis, Massachusets Institute of Technology, Boston

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41(6):633–646

    Article  PubMed  CAS  Google Scholar 

  • Vallino JJ, Stephanopoulos G (1994a) Carbon flux distributions at the glucose 6-phosphate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol Prog 10(3):327–334

    Article  CAS  Google Scholar 

  • Vallino JJ, Stephanopoulos G (1994b) Carbon flux distributions at the pyruvate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol Prog 10(3):320–326

    Article  CAS  Google Scholar 

  • Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60(5):547–555. doi:10.1007/s00253-002-1120-7

    PubMed  CAS  Google Scholar 

  • Varela CA, Baez ME, Agosin E (2004) Osmotic stress response: quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebactetium glutamicum. Appl Environ Microbiol 70(7):4222–4229. doi:10.1128/aem.70.7.4222-4229.2004

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2002) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  Google Scholar 

  • Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during Lysine production with sucrose as carbon source. Appl Environ Microbiol 70(12):7277–7287. doi:10.1128/aem.70.12.7277-7287.2004

    Article  PubMed  CAS  Google Scholar 

  • Wolf A, Kramer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49(4):1119–1134. doi:10.1046/j.1365-2958.2003.03625.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KVV acknowledges financial support for research from Department of Science and Technology, India. Authors are thankful to Dr. M. G. Poolman and Prof. D. A. Fell (Oxford Brooks University) for providing the “ScrumPy” software. Authors are also thankful to Prof. Sharad Bhartiya and Dr P. K. Vinod for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Venkatesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajvanshi, M., Gayen, K. & Venkatesh, K.V. Lysine overproducing Corynebacterium glutamicum is characterized by a robust linear combination of two optimal phenotypic states. Syst Synth Biol 7, 51–62 (2013). https://doi.org/10.1007/s11693-013-9107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-013-9107-5

Keywords

Navigation