Skip to main content
Log in

Are we doing synthetic biology?

  • Opinion
  • Published:
Systems and Synthetic Biology

Abstract

Synthetic Biology is a singular, revolutionary scenario with a vast range of practical applications but, is SB research really based on engineering principles? Is it contributing to the artificial synthesis of life or using approaches “sophisticated” enough to fall outside the scope of biotechnology or metabolic engineering? We have reviewed the state of the art on synthetic biology and we conclude that most research projects actually describe an extension of metabolic engineering. We draw this conclusion because the complexity of living organisms, their tight dependence on evolution and our limited knowledge of the interactions between the molecules they are made of, actually make life difficult to engineer. We therefore propose the term synthetic biology should be used more sparingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (2008) Engineering biology A talk with Drew Endy. Edge the Third Culture <http://wwwedge.org/3rd_culture/endy08/endy08_indexhtml>. Accessed June 20, 2012

  • Anthony JR, Anthony LC, Nowroozi F, Kwon G et al (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13–19

    Article  PubMed  CAS  Google Scholar 

  • Bedau M, Church G, Rasmussen S, Caplan A et al (2010) Life after the synthetic cell. Nature 465:422–424

    Article  PubMed  Google Scholar 

  • Benner SA, Yang Z, Chen F (2011) Synthetic biology, tinkering biology, and artificial biology. What are we learning? Compt Rend Chimie 14:372–387

    Article  CAS  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  PubMed  CAS  Google Scholar 

  • Calvert J, Fujimura JH (2011) Calculating life? Duelling discourses in interdisciplinary systems biology. Stud Hist Phil Biol Biomed Sci 42:155–163

    Article  Google Scholar 

  • Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1:20050018

    Google Scholar 

  • Cohen J (2012) The limits of avian flu studies in ferrets. Science 335:512–513

    Article  PubMed  CAS  Google Scholar 

  • Connor MR, Atsumi SJ (2010) Synthetic biology guides biofuel production. J Biomed Biotechnol. ID 541698

  • Danchin A (1998) The Delphic boat or what the genomic texts tell us. Bioinformatics 14:383

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589

    Article  PubMed  Google Scholar 

  • de Lorenzo V (2011) Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng Bugs 2:3–7

    Article  PubMed  Google Scholar 

  • Dzieciol AJ, Mann S (2012) Designs for life protocell models in the laboratory. Chem Soc Rev 41:79–85

    Article  PubMed  CAS  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  PubMed  CAS  Google Scholar 

  • Erickson B, Singh R, Winters P (2011) Synthetic biology regulating industry uses of new biotechnologies. Science 333:1254–1256

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Licata I, Modonesi CM et al (2011) What is artificial about life? Sci World J 11:670–673

    Article  Google Scholar 

  • Goodman C (2008) Engineering ingenuity at iGEM. Nat Chem Biol 4:13

    Article  PubMed  CAS  Google Scholar 

  • Güell M, van Noort V, Yus E, Chen WH et al (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271

    Article  PubMed  Google Scholar 

  • Joyce GF (2012) Toward an alternative biology. Science 336:307–308

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Keller EF (2009) What does synthetic biology have to do with biology? BioSocieties 4:291–302

    Article  Google Scholar 

  • Kühner S, van Noort V, Betts MJ, Leo-Macias A et al (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    Article  PubMed  Google Scholar 

  • Kurihara K, Tamura M, Shohda K, Toyota T et al (2011) Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat Chem 3:775–781

    Article  PubMed  CAS  Google Scholar 

  • Letelier JC, Cárdenas ML, Cornish-Bowden A (2011) From L’Homme Machine to metabolic closure: steps towards understanding life. J Theor Biol 286:110–113

    Article  Google Scholar 

  • Malaterre C (2009) Can synthetic biology shed light on the origins of life? Biol Theor 4:357–367

    Article  Google Scholar 

  • Mitchell W (2011) Natural products from synthetic biology. Curr Opin Chem Biol 15:505–515

    Article  PubMed  CAS  Google Scholar 

  • Moya A, Krasnogor N, Peretó J, Latorre A (2009a) Goethe’s dream. Challenges and opportunities for synthetic biology. EMBO Rep 10:S28–S32

    Article  PubMed  CAS  Google Scholar 

  • Moya A, Gil R, Latorre A, Peretó J et al (2009b) Toward minimal bacterial cells evolution vs. design. FEMS Microbiol Rev 33:225–235

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Hohn MJ, Umehara T, Guo LT et al (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Peretó J, Català J (2007) The renaissance of synthetic biology. Biol Theor 2:128–130

    Article  Google Scholar 

  • Pinheiro VB, Taylor AI, Cozens C, Abramov M et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344

    Article  PubMed  CAS  Google Scholar 

  • Porcar M (2010) Beyond directed evolution Darwinian selection as a tool for synthetic biology. Syst Synth Biol 4:1–6

    Article  PubMed  Google Scholar 

  • Porcar M, Danchin A, de Lorenzo V, Dos Santos VA et al (2011) The ten grand challenges of synthetic life. Syst Synth Biol 5:1–9

    Article  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ (2010) A powerful toolkit for synthetic biology over 3.8 billion years of evolution. BioEssays 32:304–313

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M (2010) Xenobiology a new form of life as the ultimate biosafety tool. BioEssays 32:322–331

    Article  PubMed  CAS  Google Scholar 

  • Schwille P (2011) Bottom-up synthetic biology engineering in a tinkerer’s world. Science 333:1252–1254

    Article  PubMed  CAS  Google Scholar 

  • Solé RV, Munteanu A, Rodriguez-Caso C, Macía J (2007) Synthetic protocell biology: from reproduction to computation. Phil Trans R Soc B 362:1727–1739

    Article  PubMed  Google Scholar 

  • Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6:692–696

    PubMed  Google Scholar 

  • Weber W, Fussenegger M (2011) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Fabiola Barraclough for the correction of the English text and Andrés Moya, Paige Shaklee, Michel Morange and Jaume Bertranpetit for stimulating discussions. EU grant ST-FLOW partially funded this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Porcar or Juli Peretó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porcar, M., Peretó, J. Are we doing synthetic biology?. Syst Synth Biol 6, 79–83 (2012). https://doi.org/10.1007/s11693-012-9101-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-012-9101-3

Keywords

Navigation