Skip to main content

Advertisement

Log in

A systems view of the protein expression process

  • Review
  • Published:
Systems and Synthetic Biology

Abstract

Many biological processes are regulated by changing the concentration and activity of proteins. The presence of a protein at a given subcellular location at a given time with a certain conformation is the result of an apparently sequential process. The rate of protein formation is influenced by chromatin state, and the rates of transcription, translation, and degradation. There is an exquisite control system where each stage of the process is controlled both by seemingly unregulated proteins as well as through feedbacks mediated by RNA and protein products. Here we review the biological facts and mathematical models for each stage of the protein production process. We conclude that advances in experimental techniques leading to a detailed description of the process have not been matched by mathematical models that represent the details of the process and facilitate analysis. Such an exercise is the first step towards development of a framework for a systems biology analysis of the protein production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguda BD, Kim Y et al (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17–92, E2F, and Myc. Proc Natl Acad Sci USA 105(50):19678–19683

    Article  PubMed  CAS  Google Scholar 

  • Arigo JT, Carroll KL et al (2006) Regulation of yeast NRD1 expression by premature transcription termination. Mol cell 21(5):641–651

    Article  PubMed  CAS  Google Scholar 

  • Arnold S, Siemann M et al (2001) Kinetic modeling and simulation of in vitro transcription by phage T 7 RNA polymerase. Biotechnol Bioeng 72(5):548–561

    Article  PubMed  CAS  Google Scholar 

  • Babiskin AH, Smolke CD (2011) A synthetic library of RNA control modules for predictable tuning of gene expression in yeast. Mol Syst Biol 7:471

    Google Scholar 

  • Bai L, Shundrovsky A et al (2004) Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J Mol Biol 344(2):335–349

    Article  PubMed  CAS  Google Scholar 

  • Bar NS (2009) Analysis of protein synthesis dynamic model in eukaryotic cells: input control. Math Biosci 210:84–91

    Article  CAS  Google Scholar 

  • Bar-Even A, Paulsson J et al (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38(6):636–643

    Article  PubMed  CAS  Google Scholar 

  • Barrandon C, Spiluttini B et al (2008) Non-coding RNAs regulating the transcriptional machinery. Biol Cell 100:83–95

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J et al (1998) The proteasome: paradigm review of a self-compartmentalizing protease. Cell 92:367–380

    Article  PubMed  CAS  Google Scholar 

  • Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81(2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Ben-Asouli Y, Banai Y et al (2002) Human interferon-[gamma] mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108(2):221–232

    Article  PubMed  CAS  Google Scholar 

  • Bergmann JE, Lodish HF (1979) A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control. J Biol Chem 254(23):11927

    PubMed  CAS  Google Scholar 

  • Bernard S, Cajavec B et al (2006) Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Phil Trans R Soc A 364:1155–1170

    Article  PubMed  CAS  Google Scholar 

  • Blossey R, Schiessel H (2008) Kinetic proofreading of gene activation by chromatin remodeling. HFSP J 2(3):167–170

    Article  PubMed  CAS  Google Scholar 

  • Boeger H, Griesenbeck J et al (2008) Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133(4):716–726

    Article  PubMed  CAS  Google Scholar 

  • Brantl S, Wagner EGH (2002) An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli. J Bacteriol 184(10):2740

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Parker R (2001) Computational modeling of eukaryotic mRNA turnover. RNA 7(9):1192

    Article  PubMed  CAS  Google Scholar 

  • Carrier TA, Keasling JD (1997) Mechanistic modeling of prokaryotic mRNA decay. J Theor Biol 189(2):195–209

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Yaffe MB et al (2006) A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev 20:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Chou T (2007) Peeling and sliding in nucleosome repositioning. Phys Rev Lett 99(5):58105

    Article  CAS  Google Scholar 

  • Ciocchetta F, Hillston J et al (2008) Modelling co-transcriptional cleavage in the synthesis of yeast pre-rRNA. Theor Comput Sci 408(1):41–54

    Article  Google Scholar 

  • Connelly S, Manley JL (1989) RNA polymerase II transcription termination is mediated specifically by protein binding to a CCAAT box sequence. Mol Cell Biol 9(11):5254

    PubMed  CAS  Google Scholar 

  • Cormack BP, Struhl K (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69(4):685–696

    Article  PubMed  CAS  Google Scholar 

  • De Silvaa E, Krishnana J et al (2010) A mathematical modelling framework for elucidating the role of feedback control in translation termination. J Theor Biol 264(3):808–821

    Article  CAS  Google Scholar 

  • Dimelow RJ, Wilkinson SJ (2009) Control of translation initiation: a model-based analysis from limited experimental data. J Royal Soc Interface 6(30):51

    Article  CAS  Google Scholar 

  • Drew DA (2001) A mathematical model for prokaryotic protein synthesis. Bull Math Biol 63(2):329–351

    Article  PubMed  CAS  Google Scholar 

  • Fry CJ, Peterson CL (2001) Chromatin remodeling enzymes: who’s on first? Curr Biol 11(5):R185–R197

    Article  PubMed  CAS  Google Scholar 

  • Gadgil CJ, Kulkarni BD (2009) Autocatalysis in biological systems. AIChE J 55(3):556–562

    Article  CAS  Google Scholar 

  • Galburt EA, Grill SW et al (2007) Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446(7137):820–823

    Article  PubMed  CAS  Google Scholar 

  • Gardner TS, Cantor CR et al (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342

    Article  PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist MA, Wagner A (2006) A model of protein translation including codon bias, nonsense errors, and ribosome recycling. J Theor Biol 239(4):417–434

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Pisano DG et al (2008) Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7(16):2601–2608

    Article  PubMed  CAS  Google Scholar 

  • Groppo R, Richter JD (2009) Translational control from head to tail. Curr Opin Cell Biol 21(3):444–451

    Article  PubMed  CAS  Google Scholar 

  • Guajardo R, Sousa R (1997) A model for the mechanism of polymerase translocation1. J Mol Biol 265(1):8–19

    Article  PubMed  CAS  Google Scholar 

  • Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23

    Article  PubMed  CAS  Google Scholar 

  • Hasty J, McMillen D et al (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2(4):268–279

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Rapoport TA (1980) Mathematical modelling of translation of mRNA in eucaryotes; steady states, time-dependent processes and application to reticulocytest. J Theor Biol 86(2):279–313

    Article  PubMed  CAS  Google Scholar 

  • Heyd A, Drew DA (2003) A mathematical model for elongation of a peptide chain. Bull Math Biol 65(6):1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Hirose S (1998) Chromatin remodeling and transcription. J Biochem 124:1060–1064

    PubMed  CAS  Google Scholar 

  • Höfer T, Malte RJ (2005) On the kinetic design of transcription. Genome Inform 16(1):73–82

    PubMed  Google Scholar 

  • Holzhütter HG, Kloetzel PM (2000) A kinetic model of vertebrate 20S proteasome accounting for the generation of major proteolytic fragments from oligomeric peptide substrates. Biophys J 79(3):1196–1205

    Article  PubMed  Google Scholar 

  • Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136(4):763–776

    Article  PubMed  CAS  Google Scholar 

  • Hutti JE, Turk BE et al (2007) IκB kinase phosphorylates the K63 deubiquitinase A20 To cause feedback inhibition of the NF-κB pathway. Mol Cell Biol 27(21):7451–7461

    Article  PubMed  CAS  Google Scholar 

  • Ivanova IP, Loughrana G et al (2010) Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). PNAS 107(42):18056–18060

    Article  Google Scholar 

  • Jost D, Nowojewski A et al (2011) Small RNA biology is systems biology. BMB Rep 44(1):11

    Article  PubMed  CAS  Google Scholar 

  • Jülicher F, Bruinsma R (1998) Motion of RNA polymerase along DNA: a stochastic model. Biophys J 74(3):1169–1185

    Article  PubMed  Google Scholar 

  • Kerppola TK, Kane CM (1991) RNA polymerase: regulation of transcript elongation and termination. The FASEB Journal 5(13):2833

    PubMed  CAS  Google Scholar 

  • Khanin R, Higham DJ (2007) A minimal mathematical model of post-transcriptional gene regulation by microRNAs. University of Strathclyde, Glasgow

    Google Scholar 

  • Kim HD, O’Shea EK (2008) A quantitative model of transcription factor-activated gene expression. Nat Struct Mol Biol 15(11):1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Krogan NJ et al (2004) The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517–522

    Article  PubMed  CAS  Google Scholar 

  • Konishi T (2005) A thermodynamic model of transcriptome formation. Nucleic Acids Res 33(20):6587

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  PubMed  CAS  Google Scholar 

  • Kugel JF, Goodrich JA (2000) A kinetic model for the early steps of RNA synthesis by human RNA polymerase II. J Biol Chem 275(51):40483–40491

    Article  PubMed  CAS  Google Scholar 

  • Kuli IM, Schiessel H (2003) Chromatin dynamics: nucleosomes go mobile through twist defects. Phys Rev Lett 91(14):148103

    Article  CAS  Google Scholar 

  • Kwek KY, Murphy S et al (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Mol Biol 9(11):800–805

    CAS  Google Scholar 

  • Lee J, Choi K et al (2010) Delineating role of ubiquitination on nuclear factor-kappa B pathway by a computational modeling approach. Biochem Biophys Res Commun 391:33–37

    Article  PubMed  CAS  Google Scholar 

  • Levine E, Ben Jacob E et al (2007) Target-specific and global effectors in gene regulation by microRNA. Biophys J 93(11):L52–L54

    Article  PubMed  CAS  Google Scholar 

  • Li B, Vilardell J et al (1996) An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc Natl Acad Sci USA 93(4):1596

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Vogel C et al (2006) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25(1):117–124

    Article  PubMed  CAS  Google Scholar 

  • Luca Mariani EGS, Lexberg MH, Helmstetter C, Radbruch A, Löhning M, Höfer T (2010) Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression. Mol Syst Biol 6:359

    Google Scholar 

  • Luciani F, Kesmir C et al (2005) A mathematical model of protein degradation by the proteasome. Biophys J 88(4):2422–2432

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(suppl 1):R17

    Article  PubMed  CAS  Google Scholar 

  • McCracken S, Fong N et al (1997) 5-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 11(24):3306

    Article  PubMed  CAS  Google Scholar 

  • Monnier A, Belle R et al (2001) Evidence for regulation of protein synthesis at the elongation step by CDK/cyclinB phosphorylation. Nucleic Acids Res 29(7):1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Narula J, Smith AM, et al (2010) Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate. PLoS Comput Biol 6(5):e1000771

    Google Scholar 

  • Nayak S, Siddiqui JK et al (2011) Modelling and analysis of an ensemble of eukaryotic translation initiation models. IET Syst Biol 5(1):2–14

    Article  PubMed  CAS  Google Scholar 

  • Newman JRS, Ghaemmaghami S et al (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441(7095):840–846

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa Y, Marfella CGA et al (2006) Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J 26:490–501

    Article  CAS  Google Scholar 

  • Onouchi H, Nagami Y et al (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev 19:1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108(4):439–451

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Grabowski PJ et al (1986) Splicing of messenger RNA precursors. Annu Rev Biochem 55(1):1119–1150

    Article  PubMed  CAS  Google Scholar 

  • Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236(3):747–771

    Article  PubMed  CAS  Google Scholar 

  • Peters B, Janek K et al (2002) Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation. J Mol Biol 318(3):847–862

    Article  PubMed  CAS  Google Scholar 

  • Petersen-Mahrt SK, Estmer C et al (1999) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18(4):1014–1024

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL (2002) Chromatin remodeling enzymes: taming the machines. EMBO Rep 3(4):319–322

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot NJ, Furger A et al (2002) Integrating mRNA processing with transcription. Cell 108(4):501–512

    Article  PubMed  CAS  Google Scholar 

  • Raj A, Peskin CS et al (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10):e309

    Article  PubMed  CAS  Google Scholar 

  • Rajala T, Hakkinen A, et al (2010) Effects of transcriptional pausing on gene expression dynamics. PLoS Comput Biol 6(3):1–12

    Google Scholar 

  • Raney A, Law GL et al (2002) Regulated translation termination at the upstream open reading frame in S-adenosylmethionine decarboxylase mRNA. J Biol Chem 277(8):5988–5994

    Article  PubMed  CAS  Google Scholar 

  • Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin–proteasome system. Nat Rev Mol Cell Biol 9(9):679–689

    Article  PubMed  CAS  Google Scholar 

  • Richardson JP, Roberts JW (1993) Transcription termination. Crit Rev Biochem Mol Biol 28(1):1–30

    Article  PubMed  CAS  Google Scholar 

  • Roussel MR, Zhu R (2006) Stochastic kinetics description of a simple transcription model. Bull Math Biol 68(7):1681–1713

    Article  PubMed  CAS  Google Scholar 

  • Rozenblatt-Rosen O, Nagaike T et al (2009) The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3 mRNA processing factors. Proc Natl Acad Sci USA 106(3):755

    Article  PubMed  CAS  Google Scholar 

  • Sans MD, Xie Q et al (2004) Regulation of translation elongation and phosphorylation of eEF2 in rat pancreatic acini. Biochem Biophys Res Commun 319:144–151

    Article  PubMed  CAS  Google Scholar 

  • Saunders A, Core LJ et al (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7(8):557–567

    Article  PubMed  CAS  Google Scholar 

  • Schwanhausser B, Busse D et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  CAS  Google Scholar 

  • Sedighi M, Sengupta AM (2008) Epigenetic chromatin silencing: bistability and front propagation. Phys Biol 4(4):246–255

    Article  CAS  Google Scholar 

  • Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327(5969):1135–1139

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Yang HYO et al (2007) A kinetic-dynamic model for regulatory RNA processing. J Biotechnol 127(3):488–495

    Article  PubMed  CAS  Google Scholar 

  • Skjondal-Bar N, Morris DR (2007) Dynamic model of the process of protein synthesis in eukaryotic cells. Bull Math Biol 69(1):361–393

    Article  PubMed  CAS  Google Scholar 

  • Smith KP, Sharp ZD (1991) A Pit-1 binding site 3′ to the transcription start site inhibits transcription elongation in vitro. Biochem Biophys Res Commun 177(2):790–796

    Article  PubMed  CAS  Google Scholar 

  • Smolen P, Baxter DA et al (2000) Modeling transcriptional control in gene networks—methods, recent results, and future directions. Bull Math Biol 62(2):247–292

    Article  PubMed  CAS  Google Scholar 

  • Stewart M (2007) Ratcheting mRNA out of the nucleus. Mol Cell 25(3):327–330

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Altuvia S et al (2005) An abundance of RNA regulators*. Annu Rev Biochem 74:199–217

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y, Choi PJ et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991):533

    Article  PubMed  CAS  Google Scholar 

  • Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41(3):105–178

    Article  PubMed  CAS  Google Scholar 

  • Tjian R (1996) The biochemistry of transcription in eukaryotes: a paradigm for multisubunit regulatory complexes. Philos Trans R Soc Lond B Biol Sci 351:491–499

    Article  PubMed  CAS  Google Scholar 

  • Tripathi T, Chowdhury D (2008a) Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis. Phys Rev E 77(1):11921

    Article  CAS  Google Scholar 

  • Tripathi T, Chowdhury D (2008b) Transcriptional bursts: a unified model of machines and mechanisms. EPL (Europhys Lett) 84:68004

    Article  CAS  Google Scholar 

  • Vasisht RT (2006) Thermodynamic and kinetic modeling of transcriptional pausing. Proc Natl Acad Sci USA 103(12):4439

    Article  CAS  Google Scholar 

  • Venters BJ, Pugh BF (2009) How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol 44(2–3):117–141

    PubMed  CAS  Google Scholar 

  • Vervoorts J, Luscher-Firzlaff J et al (2006) The ins and outs of MYC regulation by posttranslational mechanisms. J Biol Chem 281(46):34725–34729

    Article  PubMed  CAS  Google Scholar 

  • Voliotis M, Cohen N et al (2008) Fluctuations, pauses, and backtracking in DNA transcription. Biophys J 94(2):334–348

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G, Nilsson L et al (1978) Models for mRNA translation: theory versus experiment. Eur J Biochem 92:397–402

    Article  Google Scholar 

  • von Hippel PH (1998) An integrated model of the transcription complex in elongation, termination, and editing. Science 281(5377):660

    Article  Google Scholar 

  • von Hippel PH, Yager TD (1991) Transcript elongation and termination are competitive kinetic processes. Proc Natl Acad Sci 88(6):2307

    Article  Google Scholar 

  • von Hippel PH, Yager TD (1992) The elongation-termination decision in transcription. Science 255(5046):809

    Article  Google Scholar 

  • Wang X, Proud CG (2008) A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B. Mol Cell Biol 28(5):1429–1442

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Iacoangeli A et al (2002) Dendritic BC1 RNA: functional role in regulation of translation initiation. J Neurosci 22(23):10232

    PubMed  CAS  Google Scholar 

  • Xie Z, Kasschau KD et al (2003) Negative feedback regulation of Dicer-Like1 in arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13(9):784–789

    Article  PubMed  CAS  Google Scholar 

  • Yamada YR, Peskin CS (2009) A look-ahead model for the elongation dynamics of transcription. Biophys J 96(8):3015–3031

    Article  PubMed  CAS  Google Scholar 

  • Yang XO, Angkasekwinai P et al (2009) Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nat Immunol 10:1260–1266

    Article  PubMed  CAS  Google Scholar 

  • You T, Coghill GM et al (2010) A quantitative model for mRNA translation in Saccharomyces cerevisiae. Yeast 27(10):785–800

    Article  PubMed  CAS  Google Scholar 

  • Young JS, Ramirez WF et al (1997) Modeling and optimization of a batch process for in vitro RNA production. Biotechnol Bioeng 56(2):210–220

    Article  PubMed  CAS  Google Scholar 

  • Zouridis H, Hatzimanikatis V (2007) A model for protein translation: polysome self-organization leads to maximum protein synthesis rates. Biophys J 92(3):717–730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from CSIR (HCP004A; fellowship to SG) and UGC (fellowship to DN). We thank Beena Pillai for useful discussions. We thank a reviewer for several helpful suggestions and for bringing to our attention literature reports on regulation of transcription termination by RNA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Gadgil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhale, S., Nyayanit, D. & Gadgil, C. A systems view of the protein expression process. Syst Synth Biol 5, 139–150 (2011). https://doi.org/10.1007/s11693-011-9088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-011-9088-1

Keywords

Navigation