Skip to main content
Log in

The Role of Vicariance and Paleoclimatic Shifts in the Diversification of Uranoscodon superciliosus (Squamata, Tropiduridae) of the Amazonian Floodplains

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

A Correction to this article was published on 02 December 2022

This article has been updated

Abstract

Wetlands are present in different parts of the globe, holding a significant portion of the local biodiversity, and have been under the constant influence of climatic changes worldwide on different time scales. Investigations with a phylogeographic approach have revealed the role of Quaternary climatic shifts on a global scale, favoring constant changes in the amplitude of floodplains and affecting the evolutionary history of multi-taxa. This pattern was observed in the Amazonian biota, but due to the complex geological history, some of these models alone are insufficient, especially in widespread species that live in specific regions of the biome. Herein, we investigated the species delimitation and biogeographic history of the semi-aquatic lizard Uranoscodon superciliosus (U. superciliosus), widely distributed in Amazonian floodplains, a habitat that was for a long time considered a corridor to gene flow. Our results support a high genetic diversity with five well-supported lineages within U. superciliosus: North of the Amazon River, East Xingu, Solimões, Purus, and Tapajós-Madeira, with the basal split within this group in the Miocene and others in the Plio-Pleistocene. These results corroborated a mixture of distinct processes that shaped the diversity of U. superciliosus with rivers as vicariant barriers and the already known role of paleoclimatic shifts during the Quaternary promoting diversification. Among tetrapods, our work is one of the first to describe the genetic structure in a widespread taxon along river-edge environments, thus supporting both patterns of diversification with the compartmentalized lineages along different Amazonian rivers (floodplains) and also the more common pattern found in upland forest species, with main rivers acting as vicariant barriers and playing a role in allopatric speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this published article and its supplementary information files. Further data are available from the authors upon request.

Change history

References

  • Aleixo, A. (2006). Historical diversification of floodplain forest specialist species in the amazon: A case study with two species of the avian genus Xiphorhynchus (Aves: Dendrocolaptidae). Biological Journal of the Linnean Society, 89(2), 383–395. https://doi.org/10.1111/j.1095-8312.2006.00703.x

    Article  Google Scholar 

  • Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034–6039. https://doi.org/10.1073/pnas.1713819115

    Article  CAS  Google Scholar 

  • Arévalo, E. S., Davis, S. K., & Sites, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus gram-micus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43, 387–418. https://doi.org/10.1093/sysbio/43.3.387

    Article  Google Scholar 

  • Ávila-Pires, T. C. S. (1995). Lizards of Brazilian Amazonia (Reptilia: Squamata), Zoologische Verhandelingen.

  • Avise, J. C. (2009). Phylogeography: Retrospect and prospect. Journal of Biogeography, 36(1), 3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x

    Article  Google Scholar 

  • Avise, J. C., Helfmant, G. S., Saunders, N. C., & Stanton Halest, L. (1986). Mitochondrial DNA differentiation in north Atlantic eels: Population genetic consequences of an unusual life history pattern. Proceedings of the National Academy of Sciences, 83(12), 4350–4354. https://doi.org/10.1073/pnas.83.12.4350

    Article  CAS  Google Scholar 

  • Baker, P. A., Fritz, S. C., Battisti, D. S., Dick, C. W., Vargas, O. M., Asner, G. P., Martin, R. E., Wheatley, A., & Prates, I. (2020). Beyond refugia: New insights on quaternary climate variation and the evolution of biotic diversity in tropical south America. In V. Rull & A. Carnaval (Eds.), Neotropical diversification: Patterns and processes (1st ed., pp. 51–70). Cham: Springer.

    Chapter  Google Scholar 

  • Barbosa, W. E. S., Ferreira, M., Schultz, E. D., Luna, L. W., Laranjeiras, T. O., Aleixo, A., & Ribas, C. C. (2021). Habitat association constrains population history in two sympatric ovenbirds along Amazonian floodplains. Journal of Biogeography, 49, 1683–1695. https://doi.org/10.1111/jbi.14266

    Article  Google Scholar 

  • Beheregaray, L. B., Cooke, G. M., Chao, N. L., & Landguth, E. L. (2015). Ecological speciation in the tropics: Insights from comparative genetic studies in Amazonia. Frontiers in Genetics, 5, 477. https://doi.org/10.3389/fgene.2014.00477

    Article  Google Scholar 

  • Benavides, E., Baum, R., McClellan, D., & Sites, J. (2007). Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): Aligning and retrieving indel signal from nuclear introns. Systematic Biology, 56(5), 776–797. https://doi.org/10.1080/10635150701618527

    Article  CAS  Google Scholar 

  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 45, 37–42. https://doi.org/10.1093/nar/gkw1070

    Article  CAS  Google Scholar 

  • Bicudo, T., Sacek, V., De Almeida, R. P., Bates, J. M., & Ribas, C. C. (2019). Andean tectonics and mantle dynamics as a pervasive Influence on Amazonian ecosystem. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-53465-y

    Article  CAS  Google Scholar 

  • Bryson, R. W., García-Vázquez, U. O., & Riddle, B. R. (2012). Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Molecular Phylogenetics and Evolution, 62(1), 87–96. https://doi.org/10.1016/j.ympev.2011.09.007

    Article  Google Scholar 

  • Cadena, C. D., Gutiérrez-Pinto, N., Dávila, N., & Terry Chesser, R. (2011). No population genetic structure in a widespread aquatic songbird from the Neotropics. Molecular Phylogenetics and Evolution, 58(3), 540–545. https://doi.org/10.1016/j.ympev.2010.12.014

    Article  Google Scholar 

  • Carvalho, A. L. G., Sena, M. A., Peloso, P. L. V., Machado, F. A., Montesinos, R., Silva, H. R., Campbell, G., & Rodrigues, M. T. (2016). A new Tropidurus (Tropiduridae) from the semiarid Brazilian caatinga: Evidence for conflicting signal between mitochondrial and nuclear loci affecting the phylogenetic reconstruction of south American collared lizards. American Museum Novitates, 2016(3852), 1–68. https://doi.org/10.1206/3852.1

    Article  CAS  Google Scholar 

  • Choueri, É. L., Gubili, C., Borges, S. H., Thom, G., Sawakuchi, A. O., Soares, E. A. A., & Ribas, C. C. (2017). Phylogeography and population dynamics of Antbirds (Thamnophilidae) from Amazonian fluvial islands. Journal of Biogeography, 44(10), 2284–2294. https://doi.org/10.1111/jbi.13042

    Article  Google Scholar 

  • Cohn-Haft, M., Naka, L. N., & Fernandes, A. M. (2007). Padrões de distribuição da avifauna da várzea dos rios Solimões e Amazonas. In A. L. K. M. Albernaz (Ed.), Conservação da várzea: identificação e caracterização de regiões biogeográficas (1st ed., pp. 287–323). ProVárzea: Ibama.

    Google Scholar 

  • Corander, J., Sirén, J., & Arjas, E. (2007). Bayesian spatial modeling of genetic population structure. Computational Statistics, 23(1), 111–129. https://doi.org/10.1007/s00180-007-0072-x

    Article  Google Scholar 

  • Core Team, R. (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved April 19, 2022, from https://www.r-project.org/

  • Cowman, P. F., & Bellwood, D. R. (2013). Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proceedings of the Royal Society b: Biological Sciences, 280(1768), 1–8. https://doi.org/10.1098/rspb.2013.1541

    Article  Google Scholar 

  • Crouch, N. M. A., Capurucho, J. M. G., Hackett, S. J., & Bates, J. M. (2019). Evaluating the contribution of dispersal to community structure in Neotropical passerine birds. Ecography (cop.), 42(2), 390–399. https://doi.org/10.1111/ECOG.03927

    Article  Google Scholar 

  • D’Angiolella, A. B., Gamble, T., Avila-Pires, T. C. S., Colli, G. R., Noonan, B. P., & Vitt, L. J. (2011). Anolis chrysolepis Duméril and Bibron, 1837 (Squamata: Iguanidae), revisited: Molecular phylogeny and taxonomy of the Anolis chrysolepis species group. Bulletin of the Museum of Comparative Zoology, 160(2), 35–63. https://doi.org/10.3099/0027-4100-160.2.35

    Article  Google Scholar 

  • Dalapicolla, J., Prado, J. R., Percequillo, A. R., & Knowles, L. L. (2021). Functional connectivity in sympatric spiny rats reflects different dimensions of Amazonian forest association. Journal of Biogeography, 48(12), 3196–3209. https://doi.org/10.1111/jbi.14281

    Article  Google Scholar 

  • Domingos, F. M. C. B., Colli, G. R., Lemmon, A., Lemmon, E. M., & Beheregaray, L. B. (2017). In the shadows: Phylogenomics and coalescent species delimitation unveil cryptic diversity in a Cerrado endemic lizard (Squamata: Tropidurus). Molecular Phylogenetics and Evolution, 107, 455–465. https://doi.org/10.1016/j.ympev.2016.12.009

    Article  Google Scholar 

  • Drummond, A., Suchard, M., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075

    Article  CAS  Google Scholar 

  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), 699–710. https://doi.org/10.1371/journal.pbio.0040088

    Article  CAS  Google Scholar 

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Figueiredo-Vázquez, C., Lourenço, A., & Velo-Antón, G. (2021). Riverine barriers to gene flow in a salamander with both aquatic and terrestrial reproduction. Evolutionary Ecology, 35(3), 483–511. https://doi.org/10.1007/s10682-021-10114-z

    Article  Google Scholar 

  • Filizola, N., & Guyot, J. L. (2009). Suspended sediment yields in the Amazon basin: An assessment using the Brazilian national data set. Hydrological Processes, 23(22), 3207–3215. https://doi.org/10.1002/hyp.7394

    Article  Google Scholar 

  • Flot, J. F. (2010). Seqphase: A web tool for interconverting phase input/output files and fasta sequence alignments. Molecular Ecology Resources, 10(1), 162–166. https://doi.org/10.1111/j.1755-0998.2009.02732.x

    Article  CAS  Google Scholar 

  • Flouri, T., Jiao, X., Rannala, B., & Yang, Z. (2018). Species tree inference with BPP using genomic sequences and the multispecies coalescent. Molecular Biology and Evolution, 35(10), 2585–2593. https://doi.org/10.1093/molbev/msy147

    Article  CAS  Google Scholar 

  • Gamble, T., Colli, G. R., Rodrigues, M. T., Werneck, F. P., & Simons, A. M. (2012). Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from south America’s open biomes. Molecular Phylogenetics and Evolution, 62(3), 943–953. https://doi.org/10.1016/j.ympev.2011.11.033

    Article  Google Scholar 

  • Geurgas, S. R., & Rodrigues, M. T. (2010). The hidden diversity of Coleodactylus amazonicus (Sphaerodactylinae, Gekkota) revealed by molecular data. Molecular Phylogenetics and Evolution, 54(2), 583–593. https://doi.org/10.1016/j.ympev.2009.10.004

    Article  CAS  Google Scholar 

  • Geurgas, S. R., Rodrigues, M. T., & Moritz, C. (2008). The genus Coleodactylus (Sphaerodactylinae, Gekkota) revisited: A molecular phylogenetic perspective. Molecular Phylogenetics and Evolution, 49(1), 92–101. https://doi.org/10.1016/j.ympev.2008.05.043

    Article  CAS  Google Scholar 

  • Gopal, B., Junk, W. J., & Davis, J. A. (2000). In B. Gopal & W. J. Junk (Eds.), Biodiversity in wetlands: assessment, function and conservation. Netherlands: Backhuys Pub Leiden.

    Google Scholar 

  • De Groot, R., Brander, L., Van Der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 50–61. https://doi.org/10.1016/j.ecoser.2012.07.005

    Article  Google Scholar 

  • Groth, J. G., & Barrowclough, G. (1999). Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12, 115–123. https://doi.org/10.1006/mpev.1998.0603

    Article  CAS  Google Scholar 

  • Gualtieri, C., Filizola, N., Oliveira, M., Santos, A. M., & Ianniruberto, M. (2018). A field study of the confluence between Negro and Solimões rivers. Part 1: Hydrodynamics and sediment transport. Comptes Rendus Géoscience, 350(1–2), 31–42. https://doi.org/10.1016/j.crte.2017.09.015

    Article  Google Scholar 

  • Haffer, J. (1969). Speciation in amazonian forest birds. Science, 165(3889), 131–137. https://doi.org/10.1126/science.165.3889.131

    Article  CAS  Google Scholar 

  • Häggi, C., Schefuß, E., Sawakuchi, A., Chiessi, C., Stefan, M., Bertassoli, D. J., Heftere, J., Zabel, M., Bakerf, A. P., & Schoutenag, S. (2019). Modern and late pleistocene particulate organic carbon transport by the Amazon river: Insights from long-chain alkyl diols. Geochimica Et Cosmochimica Acta, 262, 1–19. https://doi.org/10.1016/j.gca.2019.07.018

    Article  CAS  Google Scholar 

  • Harvey, M. G., Aleixo, A., Ribas, C. C., & Brumfield, R. T. (2017). Habitat association predicts genetic diversity and population divergence in Amazonian birds. The American Naturalist, 190(5), 631–648. https://doi.org/10.1086/693856

    Article  Google Scholar 

  • Hess, L. L., Melack, J. M., Affonso, A. G., Barbosa, C., Gastil-Buhl, M., & Novo, E. M. L. M. (2015). Wetlands of the lowland Amazon basin: Extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands, 35(4), 745–756. https://doi.org/10.1007/S13157-015-0666-Y

    Article  Google Scholar 

  • Hoorn, C., Bogotá-A, G. R., Romero-Baez, M., Lammertsma, E. I., Flantua, S. G. A., Dantas, E. L., Dinoe, R., Carmod, D. A., & Chemale, F. (2017). The Amazon at sea: Onset and stages of the Amazon river from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetery Change, 153, 51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005

    Article  Google Scholar 

  • Howland, J. M., Vitt, L. J., & Lopez, P. T. (1990). Life on the edge: The ecology and life history of the tropidurine iguanid lizard Uranoscodon superciliosum. Canadian Journal of Zoology, 68(7), 1366–1373. https://doi.org/10.1139/z90-204

    Article  Google Scholar 

  • Illiger, J. K. W. (1815). Ueberblick der Saugthiere nach ihrer Vertheilungu ber die Welttheile. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, 1811, 39–159

  • Irion, G., Junk, W. J., & de Mello, J. A. S. N. (1997). The large central Amazonian river floodplains near Manaus: Geological, climatological, hydrological and geomorphological aspects. In W. J. Junk (Ed.), The central Amazon floodplain (pp. 22–46). Springer: Eco-logical Studies.

    Google Scholar 

  • Junk, W. J., An, S., Finlayson, C. M., Gopal, B., Květ, J., Mitchell, S. A., Mitchell, S. A., & Robarts, R. D. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Sciences, 75(1), 151–167. https://doi.org/10.1007/s00027-012-0278-z

    Article  CAS  Google Scholar 

  • Junk, W. J., Piedade, M. T. F., Schöngart, J., Cohn-Haft, M., Adeney, J. M., & Wittmann, F. (2011). A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands, 31(4), 623–640. https://doi.org/10.1007/s13157-011-0190-7

    Article  Google Scholar 

  • Katoh, K., Rozewicki, J., & Kazunori, D. Y. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., & Meintjes, P. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  Google Scholar 

  • Klaus, K., & Matzke, N. J. (2020). Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology, 69(1), 61–75. https://doi.org/10.1093/sysbio/syz034

    Article  Google Scholar 

  • Landis, M., Matzke, N., Moore, B. R., & Huelsenbeck, J. P. (2013). Bayesian analysis of biogeography when the number of areas is large. Systematic Biology, 62(6), 789–804. https://doi.org/10.1093/sysbio/syt040

    Article  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  Google Scholar 

  • Laranjeiras, T. O., Naka, L. N., Leite, G. A., & Cohn-Haft, M. (2020). Effects of a major Amazonian river confluence on the distribution of floodplain forest avifauna. Journal of Biogeography, 48(4), 847–860. https://doi.org/10.1111/jbi.14042

    Article  Google Scholar 

  • Latrubesse, E. M., Cozzuol, M., da Silva-Caminha, S. A. F., Rigsby, C. A., Absy, M. L., & Jaramillo, C. (2010). The Late Miocene paleogeography of the Amazon basin and the evolution of the Amazon river system. Earth-Science Reviews, 99(3–4), 99–124. https://doi.org/10.1016/j.earscirev.2010.02.005

    Article  CAS  Google Scholar 

  • Leal, B. S. S., Palma da Silva, C., & Pinheiro, F. (2016). Phylogeographic studies depict the role of space and time scales of plant speciation in a highly diverse Neotropical region. Critical Reviews in Plant Sciences, 35(4), 215–230. https://doi.org/10.1080/07352689.2016.1254494

    Article  Google Scholar 

  • Leite, R. N., & Rogers, D. S. (2013). Revisiting Amazonian phylogeography: Insights into diversification hypotheses and novel perspectives. Organisms Diversity & Evolution, 13(4), 639–664. https://doi.org/10.1007/s13127-013-0140-8

    Article  Google Scholar 

  • Linnaeus, C. (1758). Systema naturae. Stockholm

  • Lisiecki, L. E., & Raymo, M. E. (2005). A pliocene-pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography, 20(1), 1–17. https://doi.org/10.1029/2004PA001071

    Article  Google Scholar 

  • Lopes, I. F., Miño, C. I., & Del Lama, S. N. (2007). Genetic diversity and evidence of recent demographic expansion in waterbird populations from the Brazilian Pantanal. Brazilian Journal of Biology, 67, 849–857. https://doi.org/10.1590/S1519-69842007000500007

    Article  CAS  Google Scholar 

  • Luna, L. W., Ribas, C. C., & Aleixo, A. (2021). Genomic differentiation with gene flow in a widespread Amazonian floodplain specialist bird species. Journal of Biogeography, 49, 1–13. https://doi.org/10.1111/jbi.14257

    Article  Google Scholar 

  • Macey, J. R., Schulte, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic relationships among agamid lizards of the Laudakia caucasia species group: Testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian plateau. Molecular Phylogenetics and Evolution, 10(1), 118–131. https://doi.org/10.1006/mpev.1997.0478

    Article  CAS  Google Scholar 

  • Marques-Souza, S., Pellegrino, K. C., Brunes, T. O., Carnaval, A. C., Damasceno, R. P., Borges, M. L. O., Gallardo, C. C., & Rodrigues, M. T. (2020). Hidden in the DNA: How multiple historical processes and natural history traits shaped patterns of cryptic diversity in an Amazon leaf-litter lizard Loxopholis osvaldoi (Squamata: Gymnophthalmidae). Journal of Biogeography, 47(2), 501–515. https://doi.org/10.1111/jbi.13748

    Article  Google Scholar 

  • Marquez, A., Maldonado, J. E., González, S., Beccaceci, M. D., Garcia, J. E., & Duarte, J. M. B. (2006). Phylogeography and Pleistocene demographic history of the endangered marsh deer (Blastocerus dichotomus) from the Río de la Plata Basin. Conservation Genetics, 7(4), 563–575. https://doi.org/10.1007/s10592-005-9067-8

    Article  CAS  Google Scholar 

  • Matocq, M. D., Patton, J. L., & Silva, M. N. F. (2000). Population genetic structure of two ecologically distinct Amazonian spiny rats: Separating history and current ecology. Evolution, 54(4), 1423–1432. https://doi.org/10.1111/j.0014-3820.2000.tb00574.x

    Article  CAS  Google Scholar 

  • Matzke, N. J. (2013). BioGeoBEARS: BioGeography with Bayesian (and likelihood) Evolutionary analysis in R scripts. R Package Version, 2, 1.

    Google Scholar 

  • Matzke, N. J., & Sidje, R. B. (2013). rexpokit: R wrappers for EXPOKIT. R package. In: 0.24.2, v. (Ed.)

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2012). The CIPRES science gateway: Enabling high-impact science for phylogenetics researchers with limited resources. ACM International Conference Proceeding Series. https://doi.org/10.1145/2335755.2335836

    Article  Google Scholar 

  • Miralles, A., Barrio-Amorós, C. L., Rivas, G., & Chaparro-Auza, J. C. (2006). Speciation in the “Várzéa” flooded forest: A new Mabuya (Squamata, Scincidae) from western Amazonia. Zootaxa, 1188, 1–22. https://doi.org/10.11646/zootaxa.1188.1.1

    Article  Google Scholar 

  • Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear gene trees. Evolution, 49(4), 718–726. https://doi.org/10.1111/j.1558-5646.1995.tb02308.x

    Article  Google Scholar 

  • Mouline, K., Granjon, L., Galan, M., Tatard, C., Abdoullaye, D., Atteyine, S. A., Duplantier, J. M., & Cosson, J. F. (2008). Phylogeography of a Sahelian rodent species Mastomys huberti: A plio pleistocene story of emergence and colonization of humid habitats. Molecular Ecology, 17(4), 1036–1053. https://doi.org/10.1111/j.1365-294X.2007.03610.x

    Article  CAS  Google Scholar 

  • Paradis, E. (2010). pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics, 26(3), 419–420. https://doi.org/10.1093/bioinformatics/btp696

    Article  CAS  Google Scholar 

  • Pavan, A. C., & Marroig, G. (2017). Timing and patterns of diversification in the Neotropical bat genus Pteronotus (Mormoopidae). Molecular Phylogenetics and Evolution, 108, 61–69. https://doi.org/10.1016/j.ympev.2017.01.017

    Article  CAS  Google Scholar 

  • Peres, E. A., Silva, M. J., & Solferini, V. N. (2017). Phylogeography of the spider Araneus venatrix (Araneidae) suggests past connections between Amazon and Atlantic rainforests. Biological Journal of the Linnean Society, 121(4), 771–785. https://doi.org/10.1093/biolinnean/blx036

    Article  Google Scholar 

  • Pirani, R. M., Peloso, P. L. V., Prado, J. R., Polo, É. M., Knowles, L. L., Ron, S. R., Sturaro, M. J., & Werneck, F. P. (2020). Diversification history of clown tree frogs in neotropical rainforests (Anura, Hylidae, Dendropsophus leucophyllatus group). Molecular Phylogenetics and Evolution, 150, 106877. https://doi.org/10.1016/j.ympev.2020.106877

    Article  Google Scholar 

  • Pirani, R. M., Werneck, F. P., Thomaz, A. T., Kenney, M. L., Sturaro, M. J., Ávila-Pires, T. C. S., Peloso, P. L. V., Rodrigues, M. T., & Knowles, L. L. (2019). Testing main Amazonian rivers as barriers across time and space within widespread taxa. Journal of Biogeography, 46(11), 2444–2456. https://doi.org/10.1111/jbi.13676

    Article  Google Scholar 

  • Portik, D. M., Wood, P. L., Grismer, J. L., Stanley, E. L., & Jackman, T. R. (2012). Identification of 104 rapidly evolving nuclear protein-coding markers for amplification across scaled reptiles using genomic resources. Conservation Genetics Resources, 4(1), 1–10. https://doi.org/10.1007/s12686-011-9460-1

    Article  Google Scholar 

  • Prugnolle, F., & De Meeus, T. (2002). Inferring sex-biased dispersal from population genetic tools: A review. Heredity, 88(3), 161–165. https://doi.org/10.1038/sj.hdy.6800060

    Article  CAS  Google Scholar 

  • Pupim, F. N., Sawakuchi, A. O., Almeida, R. P., Ribas, C. C., Kern, A. K., Hartmann, G. A., Chiessie, C. M., Tamura, L. N., Mineli, T. D., Savian, J. F., Grohmann, C. H., Bertassoli, D. J., Stern, A. G., Cruz, F. W., & Cracraft, J. (2019). Chronology of Terra Firme formation in Amazonian lowlands reveals a dynamic quaternary landscape. Quaternary Science Reviews, 210, 154–163. https://doi.org/10.1016/j.quascirev.2019.03.008

    Article  Google Scholar 

  • Quaresma, T. F., Cronemberger, Á. A., Batista, R., & Aleixo, A. (2022). Diversification and species limits in scale-backed antbirds (Willisornis: Thamnophilidae), an Amazonian endemic lineage. Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac011

    Article  Google Scholar 

  • Rambaut, A., Drummond, A., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  Google Scholar 

  • Ramos, E. K. S., Magalhães, R. F., Marques, N. C. S., Baêta, D., Garcia, P. C. A., & Santos, F. R. (2019). Cryptic diversity in Brazilian endemic monkey frogs (Hylidae, Phyllomedusinae, Pithecopus) revealed by multispecies coalescent and integrative approaches. Molecular Phylogenetics and Evolution, 132, 105–116. https://doi.org/10.1016/j.ympev.2018.11.022

    Article  Google Scholar 

  • Ree, R., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1), 4–14. https://doi.org/10.1080/10635150701883881

    Article  Google Scholar 

  • Ree, R. H., & Sanmartín, I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography, 45(4), 741–749. https://doi.org/10.1111/JBI.13173

    Article  Google Scholar 

  • Ribas, C. C., Aleixo, A., Gubili, C., D’Horta, F. M., Brumfield, R. T., & Cracraft, J. (2018). Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): Implications for the evolution of Amazonian landscapes during the quaternary. Journal of Biogeography, 45(4), 917–928. https://doi.org/10.1111/jbi.13169

    Article  Google Scholar 

  • Ribas, C. C., Aleixo, A., Nogueira, A. C. R., Miyaki, C. Y., & Cracraft, J. (2012). A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society b: Biological Sciences, 279(1729), 681–689. https://doi.org/10.1098/rspb.2011.1120

    Article  Google Scholar 

  • Ribeiro, M. A., Choueri, E., Lobos, S., Venegas, P., Torres-Carvajal, O., & Werneck, F. (2020). Eight in one: Morphological and molecular analyses reveal cryptic diversity in Amazonian alopoglossid lizards (Squamata: Gymnophthalmoidea). Zoological Journal of the Linnean Society, 190(1), 227–270. https://doi.org/10.1093/zoolinnean/zlz155

    Article  Google Scholar 

  • Ribeiro-Júnior, M. A., & Amaral, S. (2015). Catalogue of distribution of lizards (Reptilia: Squamata) from the Brazilian Amazonia. I. Dactyloidae, Hoplocercidae, Iguanidae, Leiosauridae, Polychrotidae. Tropiduridae. Zootaxa, 3983(1), 1–110. https://doi.org/10.11646/zootaxa.4269.2.1

    Article  Google Scholar 

  • Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Systematic Biology, 46(1), 195–203. https://doi.org/10.1093/sysbio/46.1.195

    Article  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  Google Scholar 

  • Rossetti, D. F., Valeriano, M. M., Góes, A. M., & Thales, M. (2008). Palaeodrainage on Marajó Island, northern Brazil, in relation to Holocene relative sea-level dynamics. Holocene, 18(6), 923–934. https://doi.org/10.1177/0959683608091798

    Article  Google Scholar 

  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Phylogenetics and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  Google Scholar 

  • Rull, V. (2011). Neotropical biodiversity: Timing and potential drivers. Trends in Ecology & Evolution, 26(10), 508–513. https://doi.org/10.1016/j.tree.2011.05.011

    Article  Google Scholar 

  • Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., & Coley, P. D. (1986). River dynamics and the diversity of Amazon lowland forest. Nature, 322(6076), 254–258. https://doi.org/10.1038/322254a0

    Article  Google Scholar 

  • Sambrook, J., & Russell, D. (2006). The condensed protocols from molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sawakuchi, A. O., Schultz, E. D., Pupim, F. D. N., Bertassoli, D. J., Souza, D. F., Cunha, D. F., Mazoca, C. E., Ferreira, M. P., Grohmann, C. H., Wahnfried, I. D., Chiessi, C. M., Cruz, F. W., Almeida, R. P., & Ribas, C. C. (2022). Rainfall and sea level drove the expansion of seasonally flooded habitats and associated bird populations across Amazonia. Nature Communications, 13(1), 1–15.

    Article  Google Scholar 

  • Silva, S. M., Townsend Peterson, A., Carneiro, L., Burlamaqui, T. C. T., Ribas, C. C., Sousa-Neves, T., Miranda, L. S., Fernandes, A. M., D’horta, F. M., Araújo-Silva, L. E., Batista, R., Bandeira, C. H. M. M., Dantas, S. M., Ferreira, M., Martins, D. M., Oliveira, J., Rocha, T. C., Sardelli, C. H., Thom, G., … Aleixo, A. (2019). A dynamic continental moisture gradient drove Amazonian bird diversification. Science Advances, 5(7), 1–10. https://doi.org/10.1126/sciadv.aat5752

    Article  Google Scholar 

  • Stephens, M., Smith, N., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics, 68(4), 978–989. https://doi.org/10.1086/319501

    Article  CAS  Google Scholar 

  • Sturaro, M. J., Rodrigues, M. T., Colli, G. R., Knowles, L. L., & Ávila-Pires, T. C. S. (2018). Integrative taxonomy of the lizards Cercosaura ocellata species complex (Reptilia: Gymnophthalmidae). Zoologischer Anzeiger, 275, 37–65. https://doi.org/10.1016/j.jcz.2018.04.004

    Article  Google Scholar 

  • Thom, G., Amaral, F. R., Hickerson, M. J., Aleixo, A., Araujo-Silva, L. E., Ribas, C. C., Choueri, E., & Miyaki, C. Y. (2018). Phenotypic and genetic structure support gene flow generating gene tree discordances in an Amazonian floodplain endemic species. Systematic Biology, 67(4), 700–718. https://doi.org/10.1093/sysbio/syy004

    Article  CAS  Google Scholar 

  • Thom, G., Ribas, C. C., Shultz, E., Aleixo, A., & Miyaki, C. Y. (2022). Population dynamics of Amazonian floodplain forest species support spatial variation on genetic diversity but not range expansions through time. Journal of Biogeography, 49, 1891–1901. https://doi.org/10.1111/jbi.14478

    Article  Google Scholar 

  • Thom, G., Xue, A. T., Sawakuchi, A. O., Ribas, C. C., Hickerson, M. J., Aleixo, A., & Miyaki, C. (2020). Quaternary climate changes as speciation drivers in the Amazon floodplains. Science Advances, 6(11), 1–11. https://doi.org/10.1126/sciadv.aax4718

    Article  CAS  Google Scholar 

  • Toews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16), 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x

    Article  CAS  Google Scholar 

  • Tschudi, J. J. von. (1845). Untersuchungen über die Fauna Peruana. Scheitlin

  • Turchetto-Zolet, A. C., Pinheiro, F., Salgueiro, F., & Palma-Silva, C. (2013). Phylogeographical patterns shed light on evolutionary The proceedings of the national academy of sciences in south America. Molecular Ecology, 22(5), 1193–1213. https://doi.org/10.1111/mec.12164

    Article  CAS  Google Scholar 

  • Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Article  Google Scholar 

  • Dal Vechio, F., Prates, I., Grazziotin, F. G., Zaher, H., Graboski, R., & Rodrigues, M. T. (2020). Rain forest shifts through time and riverine barriers shaped the diversification of south American terrestrial pit vipers (Bothrops jararacussu species group). Journal of Biogeography, 47(2), 516–526. https://doi.org/10.1111/jbi.13736

    Article  Google Scholar 

  • Vonhof, H. B., & Kaandorp, R. J. (2010). Climate variation in Amazonia during the Neogene and the Quaternary. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, landscape and species evolution: A look into the past (1st ed., pp. 201–210). United Kingdom: Wiley-Blackwell.

    Google Scholar 

  • Wallace, A. R. (1854). Journal of natural history series 2 habits of Notonecta glauca. Annals and Magazine of Natural History, 14, 451–454.

    Article  Google Scholar 

  • Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938

    Article  Google Scholar 

  • Werneck, F. P., Gamble, T., Colli, G. R., Rodrigues, M. T., & Sites, J. W. (2012). Deep diversification and long-term persistence in the south american “dry diagonal”: Integrating continent-wide phylogeography and distribution modeling of geckos. Evolution (n.y), 66(10), 3014–3034. https://doi.org/10.1111/j.1558-5646.2012.01682.x

    Article  Google Scholar 

  • Whiting, A. S., Bauer, A. M., & Sites, J. W. (2003). Phylogenetic relationships and limb loss in sub-Saharan African scincinae lizards (Squamata: Scincidae). Molecular Phylogenetics and Evolution, 29(3), 582–598. https://doi.org/10.1016/S1055-7903(03)00142-8

    Article  CAS  Google Scholar 

  • Wittmann, F., Schöngart, J., & Junk, W. J. (2010). Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In W. Junk, M. Piedade, F. Wittmann, J. Schöngart, & P. Parolim (Eds.), Amazonian floodplain forests Amazonian floodplain forests (1st ed., pp. 61–102). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Wroughton, R. C. (1909). LXIX.—New Muridae from British East Africa. Annals and Magazine of Natural History, 4(24), 539–542. https://doi.org/10.1080/00222930908692714.

  • Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. The Proceedings of the National Academy of Sciences, 107(20), 9264–9269. https://doi.org/10.1073/pnas.0913022107

    Article  Google Scholar 

  • Zamudio, K. R., Bell, R. C., & Mason, N. A. (2016). Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. The Proceedings of the National Academy of Sciences, 113(29), 8041–8048. https://doi.org/10.1073/pnas.1602237113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. João C. L. Costa who generously provided tissue samples from the state of Maranhão. Dr. Roberta Graboski, Dr. Romina S. S. Batista, Msc. Carlynne C. Simões for the help in laboratory procedures, software analysis, and graphical support. Dr. Camila C. Ribas and Dr. Leilton W. R. Luna for helpful feedback and suggestions to improve the manuscript. This work was developed at the Molecular Biology Laboratory of the Museu Paraense Emílio Goeldi (MPEG) with resources from Financiadora de Estudos e Projetos (FINEp) for the project “Analytical Park of the MPEG: analysis of the transformations of the Amazon and its effects on sociobiodiversity and the landscape” (#0118003100), coordinated by ALCP. MVS was supported by a MSc. fellowship from Coordenação de Apoio à Formação de Pessoal de Nível Superior (CAPES, process 88882.459754/2019-01) in the Programa de Pós-Graduação em Biodiversidade e Evolução (PPGBE/MPEG). ALCP was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; processes 302611/2018-5, PROTAXA 441462/2020-0). MJS and part of this study were supported by CNPq (process # 434362/2018-2).

Funding

This work received support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Grant No. 88882.459754/2019-01, Financiadora de Estudos e Projetos, #0118003100, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant No. 302611/2018-5,434362/2018-2

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. MVS and MJS performed the material preparation, data collection, and formal analysis. The first draft of the manuscript was written by MVS and all authors commented on previous versions of the manuscript. ALCP, MTR and MJS contributed to the writing, review, and editing of the final version. Resources were provided by ALCP, MTR and MJS. Funding acquisition and supervision were undertaken by ALCP and MJS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana L. C. Prudente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All samples used in the present study were collected under license and are formally deposited in scientific collections.

Additional information

The original online version of this article was revised: The wrong Electronic Supplementary file 1 was originally published with this article; it has now been replaced with the correct file and some changes in the Data Availability.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.V., Prudente, A.L.C., Rodrigues, M.T. et al. The Role of Vicariance and Paleoclimatic Shifts in the Diversification of Uranoscodon superciliosus (Squamata, Tropiduridae) of the Amazonian Floodplains. Evol Biol 49, 449–463 (2022). https://doi.org/10.1007/s11692-022-09583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-022-09583-z

Keywords

Navigation