Do Longevity and Fecundity Change by Selection on Mating Success at Elevated Temperature? Correlated Selection Responses in Drosophila buzzatii

Abstract

Adaptation to environmental temperature depends on both direct and correlated responses to selection for reproduction and survival at elevated temperature. Sexual selection is one of the most powerful of all evolutionary forces and we tested both fecundity and longevity for their correlated responses to sexual selection on the ability to mate (mating success) at high temperature. Replicated lines selected for 15 generations of mating at 33 °C (S lines) were compared to their respective controls (C lines) in D. buzzatii in three thermal regimes: 25 °C, 30 °C and a cyclic thermal regime for longevity from 17 to 32 °C. Previous work showed that S lines successfully responded for the trait selected and the present results show a trade-off in males between mating success at elevated temperature and longevity in all three thermal regimes tested. In addition, inter-sexual relationships of trade-offs were apparent between male longevity and female fecundity as correlated selection responses. In this sex-specific association of trade off, S females exhibited higher fecundity than C females at 30 °C only if females were exposed to a limited social environment of a single male. Overall, selection for mating at high temperature increases female fecundity at high temperature but decreases longevity in males. This sex-specific and negative impact on longevity in males could be the result of a genetic correlation between mating success at high temperature and reduced longevity in this sex.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Andersson, M. (1994). Sexual selection. Princeton University Press.

    Book  Google Scholar 

  2. Bochdanovits, Z., & Jong, G. D. (2003). Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution, 57(8), 1829–1836.

    PubMed  Article  Google Scholar 

  3. Borda, M. A., Sambucetti, P. D., Gomez, F. H., & Norry, F. M. (2018). Genetic variation for egg-to-adult survival in Drosophila melanogaster in a set of recombinant inbred lines reared under heat stress in a natural thermal environment. Entomologia Experimentalis Et Applicata, 166(10), 863–872.

    CAS  Article  Google Scholar 

  4. Bowler, K., & Terblanche, J. S. (2008). Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biological Reviews, 83(3), 339–355.

    PubMed  Article  Google Scholar 

  5. Brooks, R., & Endler, J. A. (2001). Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poeciliareticulata). Evolution, 55(5), 1002–1015.

    CAS  PubMed  Article  Google Scholar 

  6. Chown, S. L., Hoffmann, A. A., Kristensen, T. N., Angilletta, M. J., Jr., Stenseth, N. C., & Pertoldi, C. (2010). Adapting to climate change: A perspective from evolutionary physiology. Climate Research, 43(1–2), 3–15.

    Article  Google Scholar 

  7. Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution, 18(11), 573–581.

    Article  Google Scholar 

  8. Curtsinger, J. W., & Khazaeli, A. A. (2002). Lifespan, QTLs, age-specificity, and pleiotropy in Drosophila. Mechanisms of Ageing and Development, 123(2–3), 81–93.

    PubMed  Article  Google Scholar 

  9. Darwin, C. (1859). On the Origin of Species. Facsimile of the first edition 1964. Cambridge: Harvard University Press.

    Google Scholar 

  10. Darwin, C. (1871). The descent of man and selection in relation to sex. Appleton.

    Book  Google Scholar 

  11. de Jong, G. (1990). Quantitative genetics of reaction norms. Journal of evolutionary biology, 3(5–6), 447–468.

    Article  Google Scholar 

  12. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., & Robledo,C.W. (2017). InfoStat versión 2017. Grupo InfoStat FCA. Universidad Nacional de Córdoba, Argentina.〈http://www.infostat.com.ar〉.

  13. Dolgin, E. S., Whitlock, M. C., & Agrawal, A. F. (2006). Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. Journal of Evolutionary Biology, 19(6), 1894–1900.

    CAS  PubMed  Article  Google Scholar 

  14. Flatt, T., & Heyland, A. (2011). Mechanisms of life history evolution: The genetics and physiology of life history traits and trade-offs. OUP.

    Book  Google Scholar 

  15. Franks, S. J., & Hoffmann, A. A. (2012). Genetics of climate change adaptation. Annual Review of Genetics, 46, 185–208.

    CAS  PubMed  Article  Google Scholar 

  16. García-Roa, R., Garcia-Gonzalez, F., Noble, D. W. A., & Carazo, P. (2020). Temperature as a modulator of sexual selection. Biological Reviews, 95(6), 1607–1629.

    PubMed  Article  Google Scholar 

  17. Gomez, F. H., Sambucetti, P., & Norry, F. M. (2016). Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life. Biogerontology, 17(5–6), 883–892.

    CAS  PubMed  Article  Google Scholar 

  18. Gomez, F. H., Stazione, L., Sambucetti, P., & Norry, F. M. (2020). Negative genetic correlation between longevity and its hormetic extension by dietary restriction in Drosophila melanogaster. Biogerontology, 21(2), 191–201.

    CAS  PubMed  Article  Google Scholar 

  19. Harshman, L. G., & Hoffmann, A. A. (2000). Laboratory selection experiments using Drosophila: What do they really tell us? Trends in Ecology & Evolution, 15, 32–36.

    CAS  Article  Google Scholar 

  20. Hoffmann, A. A., & Daborn, P. J. (2007). Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecology Letters, 10(1), 63–76.

    PubMed  Article  Google Scholar 

  21. Hoffmann, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. Oxford University Press.

    Google Scholar 

  22. Hoffmann, A. A., Hallas, R. J., Dean, J. A., & Schiffer, M. (2003). Low potential for climatic stress adaptation in a rainforest Drosophila species. Science, 301(5629), 100–102.

    CAS  PubMed  Article  Google Scholar 

  23. Hoffmann, A. A., & Willi, Y. (2008). Detecting genetic responses to environmental change. Nature Reviews Genetics, 9(6), 421–432.

    CAS  PubMed  Article  Google Scholar 

  24. Kengeri, S. S., Maras, A. H., Suckow, C. L., Chiang, E. C., & Waters, D. J. (2013). Exceptional longevity in female Rottweiler dogs is not encumbered by investment in reproduction. Age, 35(6), 2503–2513.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Khazaeli, A. A., & Curtsinger, J. W. (2014). Heterogeneity’s ruses: How hidden variation affects population trajectories of age-dependent fecundity in Drosophila melanogaster. Demographic Research, 30, 313–332.

    Article  Google Scholar 

  26. Kirkwood, T. B., & Austad, S. N. (2000). Why do we age? Nature, 408(6809), 233–238.

    CAS  PubMed  Article  Google Scholar 

  27. Klepsatel, P., Gáliková, M., De Maio, N., Huber, C. D., Schlotterer, C., & Flatt, T. (2013). Variation in thermal performance and reaction norms among populations of Drosophila melanogaster. Evolution, 67, 3573–3587.

    PubMed  Article  Google Scholar 

  28. Kristensen, T. N., Ketola, T., & Kronholm, I. (2020). Adaptation to environmental stress at different timescales. Annals of the New York Academy of Sciences, 1476(1), 5–12.

    PubMed  Article  Google Scholar 

  29. Le Bourg, É. (2007). Does reproduction decrease longevity in human beings? Ageing Research Reviews, 6(2), 141–149.

    PubMed  Article  Google Scholar 

  30. Mackay, T. F. (2002). The nature of quantitative genetic variation for Drosophila longevity. Mechanisms of Ageing and Development, 123(2–3), 95–104.

    PubMed  Article  Google Scholar 

  31. Manenti, T., Sørensen, J. G., Moghadam, N. N., & Loeschcke, V. (2016). Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes. Heredity, 117, 149–154.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Medawar, P. B. (1952). An unsolved problem of biology. The Uniqueness of the Individual (pp. 28–55). Dover Publications.

    Google Scholar 

  33. Norry, F. M., Sambucetti, P., Scannapieco, A. C., & Loeschcke, V. (2006). Altitudinal patterns for longevity, fecundity and senescence in Drosophila buzzatii. Genetica, 128, 81–93.

    CAS  PubMed  Article  Google Scholar 

  34. Overgaard, J., & Sørensen, J. G. (2008). Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology, 56(2), 159–162.

    CAS  PubMed  Article  Google Scholar 

  35. Partridge, L., & Barton, N. H. (1993). Evolution of aging: Testing the theory using Drosophila. Genetica, 91(1–3), 89–98.

    CAS  PubMed  Article  Google Scholar 

  36. Partridge, L., Gems, D., & Withers, D. J. (2005). Sex and death: What is the connection? Cell, 120(4), 461–472.

    CAS  PubMed  Article  Google Scholar 

  37. Rauser, C. L., Mueller, L. D., & Rose, M. R. (2003). Aging, fertility, and immortality. Experimental Gerontology, 38(1–2), 27–33.

    PubMed  Article  Google Scholar 

  38. Reusch, T. B., & Wood, T. E. (2007). Molecular ecology of global change. Molecular Ecology, 16(19), 3973–3992.

    CAS  PubMed  Article  Google Scholar 

  39. Rose, M., & Charlesworth, B. (1980). A test of evolutionary theories of senescence. Nature, 287(5778), 141–142.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Rose, M. R. (2009). Adaptation, aging and genomic information. Aging, 1(5), 444–450.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Sambucetti, P., Sørensen, J. G., Loeschcke, V., & Norry, F. M. (2005). Variation in senescence and associated traits between sympatric cactophilic sibling species of Drosophila. Evolutionary Ecology Research, 7(6), 915–930.

    Google Scholar 

  42. Sambucetti, P., Loeschcke, V., & Norry, F. M. (2015). Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster. Biogerontology, 16(6), 801–810.

    CAS  PubMed  Article  Google Scholar 

  43. Sambucetti, P., & Norry, F. M. (2015). Mating success at high temperature in highland and lowland derived populations as well as in heat knock down selected Drosophila buzzatii. Entomologia Experimentalis Et Applicata, 154(3), 206–212.

    Article  Google Scholar 

  44. Scannapieco, A. C., Sambucetti, P., & Norry, F. M. (2009). Direct and correlated responses to selection for longevity in Drosophila buzzatii. Biological Journal of the Linnean Society, 97(4), 738–748.

    Article  Google Scholar 

  45. Schuster, S. M. (2009). Sexual selection and mating systems. Proceedings of the National Academy of Sciences, 106(s1), 10009–10016.

    Article  Google Scholar 

  46. Sgrò, C., & Hoffmann, A. A. (2004). Genetic correlations, tradeoffs and environmental variation. Heredity, 93, 241–248.

    PubMed  Article  Google Scholar 

  47. Sgrò, C. M., Terblanche, J. S., & Hoffmann, A. A. (2016). What can plasticity contribute to insect responses to climate change? Annual Review of Entomology, 61, 433–451.

    PubMed  Article  CAS  Google Scholar 

  48. Sørensen, J. G., Norry, F. M., Scannapieco, A. C., & Loeschcke, V. (2005). Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. Journal of Evolutionary Biology, 18(4), 829–837.

    PubMed  Article  Google Scholar 

  49. Stazione, L., Norry, F. M., & Sambucetti, P. (2017). Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster. Entomologia Experimentalis Et Applicata, 165(2–3), 159–168.

    CAS  Article  Google Scholar 

  50. Stazione, L., Norry, F. M., & Sambucetti, P. (2019). Heat-hardening effects on mating success at high temperature in Drosophila melanogaster. Journal of Thermal Biology, 80, 172–177.

    CAS  PubMed  Article  Google Scholar 

  51. Stazione, L., Norry, F. M., Gomez, F. H., & Sambucetti, P. (2020). Heat knockdown resistance and chill-coma recovery as correlated responses to selection on mating success at high temperature in Drosophila buzzatii. Ecology and Evolution, 10(4), 1998–2006.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Stearns, S., de Jong, G., & Newman, B. (1991). The effects of phenotypic plasticity on genetic correlations. Trends in ecology & evolution, 6(4), 122–126.

    CAS  Article  Google Scholar 

  53. Vieira, C., Pasyukova, E. G., Zeng, Z. B., Hackett, J. B., Lyman, R. F., & Mackay, T. F. C. (2000). Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics, 154, 213–227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

  55. Wit, J., Kristensen, T. N., Sarup, P., Frydenberg, J., & Loeschcke, V. (2013). Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Experimental Gerontology, 48(11), 1189–1195.

    PubMed  Article  Google Scholar 

  56. Zwaan, B., Bijlsma, R., & Hoekstra, R. F. (1995). Direct selection on life span in Drosophila melanogaster. Evolution, 49(4), 649–659.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for helpful comments on the manuscript. We thanks support from Consejo Nacional de Investigaciones Científicas y Técnicas, Agencia Nacional de Promoción Científica y Tecnológica, and University of Buenos Aires.

Funding

This research was supported by grants from Universidad de Buenos Aires (20020170100180BA), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 11220130100083CO), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT. PICT-2017-1426) to FMN, as well as the grant from ANPCyT (PICT-2015-1658) to PDS.

Author information

Affiliations

Authors

Contributions

PS and FMN designed the study; LS carried out the laboratory work; LS, PS and FMN did the statistical analyzes; FMN, LS and PS drafted the manuscript. LS, FMN and PS revised and approved the final version.

Corresponding author

Correspondence to Pablo Sambucetti.

Ethics declarations

Conflict of interest

Not applicable.

Informed Consent

All collaboration authors have approved their participation to publication. All contributing authors have approved this work for publication.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stazione, L., Norry, F.M. & Sambucetti, P. Do Longevity and Fecundity Change by Selection on Mating Success at Elevated Temperature? Correlated Selection Responses in Drosophila buzzatii. Evol Biol (2021). https://doi.org/10.1007/s11692-021-09540-2

Download citation

Keywords

  • Mating success
  • Heat stress
  • Life span
  • Fecundity
  • Thermal selection
  • Trade-off