Can Anyone Climb? The Skills of a Non-specialized Toad and its Bearing on the Evolution of New Niches

Abstract

Several studies of arboreal anuran species show morphological specializations for clinging onto narrow substrates. However, little is known about these capacities in non-specialized anurans, which is crucial to understand the initial phases of adaptation to a new niche. To assess the functional requirements related to the evolution of arboreality in anurans we analyzed climbing performance, and correlated anatomical traits, in the terrestrial toad Rhinella arenarum, a species choose as a proxy for the ancestral condition regarding the evolution of this specialized niche. We studied the impact of a substrate of wooden rods with different diameters, arrangements, and slopes on locomotion, grasping, and climbing with a comparative framework. Animals were confronted with climbing tests, video recording their behaviors. Preserved specimens were dissected to assess limb myology, osteology, and tendons’ characteristics. Our results show that how terrestrial toad R. arenarum climbs is different from those displayed by specialized tree frogs. Animals flexed their fingers and toes, grasping the substrate displaying hookings and partial graspings. The palm was scarcely involved in the grip, as in specialized anurans. These actions were performed although flexor and extensor muscles of the digits are highly conserved and generalized. Further, we formally assess the evolutionary history of ecological and anatomical traits related to climbing among Rhinella species to improving the comprehension of the relation between morphofunctional patterns and behavioral climbing skills. Our experiments revealed that this terrestrial toad possesses unexpected climbing capacities, suggesting a way in which evolution of new niches could have developed in the evolution of anurans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdala, V., Manzano, A. S., Tulli, M. J., & Herrel, A. (2009). The tendinous patterns in the palmar surface of the lizard manus: Tests of functional consequences for grasping ability. The Anatomical Record, 292, 842–853.

    PubMed  Article  PubMed Central  Google Scholar 

  2. Almendáriz, A., Cisneros-Heredia, D., Jungfer, K.-H., Coloma, L. A., & Ron, S. (2004). Rhinella festae. The IUCN Red List of THreatened Species, 2004, e.T54876A11205881.

    Google Scholar 

  3. Angulo, A., Reichle, S., Köhler, J., & Córdova-Santa Gadea, J. (2004). Rhinella veraguensis. The IUCN Red List of Threatened Species, 2004, e.T54792A11192672.

    Google Scholar 

  4. Anzeraey, A., Aumont, M., Decamps, T., Herrel, A., & Pouydebat, E. (2017). The effect of food properties on grasping and manipulation in the aquatic frog Xenopus laevis. The Journal of Experimental Biology, 220, 4486–4491.

    PubMed  PubMed Central  Google Scholar 

  5. Aubret, F., Bonnet, X., & Shine, R. (2007). The role of adaptive plasticity in a major evolutionary transition: Early aquatic experience affects locomotor performance of terrestrial snakes. Functional Ecology, 21, 1154–1161.

    Article  Google Scholar 

  6. Azevedo-Ramos, C., Hoogmoed, M., Coloma, L. A., Ron, S., Castro, F., Rueda, J. V., Cisneros-Heredia, D., Icochea, J., & Angulo, A. (2004). Rhinella dapsilis. The IUCN Red List of Threatened Species, 2004, e.T54625A11177070.

    Google Scholar 

  7. Bastos, R., Pavan, D., & Silvano, D. (2004). Rhinella ocellata. The IUCN Red List of Threatened Species, 2004, e.T54720A11192773.

    Google Scholar 

  8. Bateson, P. (2017). Adaptability and evolution. Interface Focus, 7, 20160126. https://doi.org/10.1098/rsfs.2016.0126

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beltman, J. B., Haccou, P., & Ten Cate, C. (2004). Learning and colonization of new niches: A first step toward speciation. Evolution, 58(1), 35–46.

    PubMed  Article  PubMed Central  Google Scholar 

  10. Blotto, B., Pereyra, M. O., Grant, T., & Faivovich, J. (2020). Hand and foot musculature of Anura: Structure, homology, terminology, and synapomorphies for major clades. Bulletin of the American Museum of Natural History, 443, 155. https://doi.org/10.1206/0003-0090.443.1.1

    Article  Google Scholar 

  11. Burton, T. C. (1998). Are the distal extensor muscles of the fingers of Anurans an adaptation to arboreality? Journal of Herpetology, 32, 611–617.

    Article  Google Scholar 

  12. CalPhotos Photo Database. (2020). Rhinella castaneotica. BNHM Berkeley Natural History Museums, University of California, Berkeley. https://calphotos.berkeley.edu/cgi/img_query?enlarge=0000+0000+1009+1826. Accessed 3 June 2020.

  13. CalPhotos Photo Database. (2020). Rhinella manu. BNHM Berkeley Natural History Museums, University of California, Berkeley. https://calphotos.berkeley.edu/cgi/img_query?enlarge=0000+0000+1009+1823. Accessed 3 June 2020.

  14. CalPhotos Photo Database. (2020). Rhinella veraguensis. BNHM Berkeley Natural History Museums,University of California, Berkeley. https://calphotos.berkeley.edu/cgi/img_query?enlarge=1111+1111+1111+1354. Accessed 11 June 2020.

  15. CalPhotos Photo Database. (2020). Rhinella ocellata. BNHM Berkeley Natural History Museums, University of California, Berkeley. https://calphotos.berkeley.edu/cgi/img_query?enlarge=1111+1111+1111+6041. Accessed 11 June 2020.

  16. CalPhotos Photo Database. (2020). Rhinella granulosa. BNHM Berkeley Natural History Museums, University of California, Berkeley. https://calphotos.berkeley.edu/cgi/img_query?enlarge=1111+1111+1111+2971. Accessed 3 June 2020.

  17. CalPhotos Photo Database. (2020). Rhinella arequipensis. BNHM Berkeley Natural History Museums, University of California, Berkeley. https://calphotos.berkeley.edu/cgi/img_query?seq_num=86671&one=T. Accessed 14 June 2020.

  18. Chaparro, J. C., Pramuk, J. B., & Gluesenkamp, A. G. (2007). A new species of arboreal Rhinella (Anura: Bufonidae) from cloud forest of southeastern Peru. Herpetologica, 63(2), 203–212.

    Article  Google Scholar 

  19. Chuliver Pereyra, M. (2018). Ontogenia del aparato locomotor de Physalaemus biligonigerus (Anura: Leptodactylidae): Bases para comprender la función locomotora y su origen en los anuros [Ontogeny of the locomotor apparatus of Physalaemus biligonigerus (Anura: Leptodactylidae): Basis for understanding locomotor function and its origin in anurans]. PhD Thesis. Universidad Nacional de Córdoba, Argentina.

  20. Coloma, L. A., Páez-Rosales, N., Ortiz, D. A., Frenkel, C., Ron, S. R., & Pazmiño-Armijos, G. (2018). Rhinella marina. In S. R. Ron, A. Merino-Viteri, & D. A. Ortiz (Eds.), Anfibios del Ecuador. Version 2019.0. Museo de Zoología.Pontificia Universidad Católica del Ecuador.

    Google Scholar 

  21. Correa, C., Sallaberry, M., Jara-Arancio, P., Lobos, G., Soto, E., & Méndez, M. A. (2008). Amphibia, Anura, Bufonidae, Rhinella atacamensis: Altitudinal distribution extension, new records and geographic distribution map. Check List, 4(4), 478–484.

    Article  Google Scholar 

  22. Cusi, J. C., Moravec, J., Lehr, E., & Gvoždík, V. (2017). A new species of semiarboreal toad of the Rhinella festae group (Anura, Bufonidae) from the Cordillera Azul National Park, Peru. ZooKeys, 673, 21–47. https://doi.org/10.3897/zookeys.673.13050

    Article  Google Scholar 

  23. Dagg, A. I., & Windsor, D. E. (1972). Swimming in northern terrestrial mammals. Canadian Journal of Zoology, 50, 117–130.

    Article  Google Scholar 

  24. Daneri, F., Papini, M. R., & Muzio, R. N. (2007). Common toads (Bufo arenarum) learn to anticipate and avoid hypertonic saline solutions. Journal of Comparative Psychology, 121(4), 419–427. https://doi.org/10.1037/0735-7036.121.4.419

    Article  PubMed  PubMed Central  Google Scholar 

  25. Daneri, M. F., Casanave, E., & Muzio, R. N. (2011). Control of spatial orientation in terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology, 125(3), 296–307. https://doi.org/10.1037/a0024242

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Freitas, M. A., Santos, E. M., de Amorim, F. O., & Lima de Almeida, G. V. (2018). First record of Rhinella ocellata (Günther, 1858) for the state of Bahia, northeastern Brazil (Anura: Bufonidae). Herpetology Notes, 11, 17–18.

    Google Scholar 

  27. De la Riva, I. (2002). Taxonomy and distribution of the South American toads, Bufo poeppigii Tschudi, 1845 (Amphibia, Anura, Bufonidae). Graellsia, 58(1), 49–57.

    Article  Google Scholar 

  28. de Noronha, J. C., Barros, A. B., Da Paixao, E. C., Almeida, E. J., Miranda, R. M., & Rodrigues, D. J. (2013). Climbing behaviour of terrestrial bufonids in the genus Rhinella. Herpetological Bulletin, 124, 22–23.

    Google Scholar 

  29. Díaz-Páez, H., & Ortiz, J. C. (2003). Evaluación del estado de conservación de los anfibios en Chile. Revista Chilena De Historia Natural, 76(3), 509–525.

    Article  Google Scholar 

  30. Diogo, R. (2017). Evolution driven by organismal behavior. A unifying view of life, function, form, mismatches and trends (1st ed.). . Springer.

    Book  Google Scholar 

  31. Dunlap, D. G. (1960). The comparative myology of the pelvic appendage in the salientia. Journal of Morphology, 106, 1–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Frenkel, C. (2019). Rhinella festae. In S. R. Ron, A. Merino-Viteri, & D. A. Ortiz (Eds.), Anfibios del Ecuador. Version 2019.0. Museo de Zoología.Pontificia Universidad Católica del Ecuador.

    Google Scholar 

  33. FLICKR Photo Database (2020). Rhinella humboldti. FLICKR. https://www.flickr.com/photos/125903191@N07/15329580297. Accessed 3 June 2020.

  34. FLICKR Photo Database (2020). Rhinella schneideri. FLICKR. https://www.flickr.com/photos/cdtimm/8075491625. Accessed 3 June 2020.

  35. Gaupp, E. (1896). Anatomie des Frosches. Braunschweig: Friedrich Vieweg und Sohn.

    Google Scholar 

  36. GBIF Global Biodiversity Information Facility, Secretariat (2020). Rhinella limensis. GBIF Backbone Taxonomy. Checklist dataset. Accessed via GBIF.org on 3 June 2020. https://doi.org/10.15468/39omei

  37. Gomes, F. R., Rezende, E. L., Grizante, M. B., & Navas, C. A. (2009). The evolution of jumping performance in anurans: Morphological correlates and ecological implications. Journal of Evolutionary Biology, 22, 1088–1097.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Gosá, A. (2008). Explotación del sustrato vertical por los anuros (Amphibia) del bosque atlántico. Naturzale, Cuadernos De Ciencias Naturales, 19, 131–148.

    Google Scholar 

  39. Gould, S. J., & Vrba, E. S. (1982). Exaptation-A missing term in the science of form. Paleobiology, 8, 4–15.

    Article  Google Scholar 

  40. Granda-Rodríguez, H. D., Portillo-Mozo, A. D., & Renjifo, J. M. (2008). Uso de hábitat en Atelopus laetissimus (Anura: Bufonidae) en una localidad de la Sierra Nevada de Santa Marta, Colombia. Herpetotrópicos, 4, 87–93.

    Google Scholar 

  41. Grant, T., & Bolívar, G. W. (2014). A new species of semiarboreal toad with a salamander-like ear (Anura: Bufonidae: Rhinella). Herpetologica, 70, 198–210.

    Article  Google Scholar 

  42. Herrel, A., Perrenoud, M., Decamps, T., Abdala, V., Manzano, A., & Pouydebat, E. (2013). The effect of substrate diameter and incline on locomotion in an arboreal frog. The Journal of Experimental Biology, 216, 3599–3605.

    PubMed  Article  PubMed Central  Google Scholar 

  43. Hildebrand, M., & Goslow, G. (2001). Analysis of vertebrate structure. John Wiley.

    Google Scholar 

  44. Hudson, C. M., Gregory, P. B., & Shine, R. (2016). Athletic anurans: The impact of morphology, ecology and evolution on climbing ability in invasive cane toads. Biological Journal of the Linnean Society, 119(4), 992–999.

    Article  Google Scholar 

  45. Hyams, S. E., Jayne, B. C., & Cameron, G. N. (2012). Arboreal habitat structure affects locomotor speed and perch choice of whitefooted mice (Peromyscus leucopus). Journal of Experimental Zoology, 317A, 540–551.

    Article  Google Scholar 

  46. IUCN. (2014). International Union for Conservation of Nature and Natural Resources Red List of threatened species. Version 2014.3. IUCN.

    Google Scholar 

  47. IUCN SSC Amphibian Specialist Group. (2014). Rhinella limensis. The IUCN Red List of Threatened Species, 2014, e.T54691A43476884.

    Google Scholar 

  48. IUCN SSC Amphibian Specialist Group. (2015). Rhinella castaneotica. The IUCN Red List of Threatened Species, 2015, e.T54603A61393360.

    Google Scholar 

  49. IUCN SSC Amphibian Specialist Group. (2015). Rhinella arunco. The IUCN Red List of Threatened Species, 2015, e.T54577A79810607.

    Google Scholar 

  50. IUCN SSC Amphibian Specialist Group. (2018). Rhinella vellardi. The IUCN Red List of Threatened Species, 2018, e.T54791A89197536.

    Google Scholar 

  51. IUCN SSC Amphibian Specialist Group. (2018). Rhinella nesiotes. The IUCN Red List of Threatened Species, 2018, e.T54715A89197422.

    Google Scholar 

  52. IUCN SSC Amphibian Specialist Group. (2020). Rhinella poeppigii. The IUCN Red List of Threatened Species, 2020, e.T54735A61394155.

    Google Scholar 

  53. IUCN SSC Amphibian Specialist Group. (2020). Rhinella arequipensis. The IUCN Red List of Threatened Species, 2020, e.T88991897A89226267. https://doi.org/10.2305/IUCN.UK.2020-1.RLTS.T88991897A89226267.en

    Article  Google Scholar 

  54. Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology and Evolution, 2(5), 850–858. https://doi.org/10.1038/s41559-018-0515-5

    Article  PubMed  PubMed Central  Google Scholar 

  55. Karantanis, N.-E., Rychlik, L., Herrel, A., & Youlatos, D. (2017). Arboreal gaits in three sympatric rodents Apodemus agrarius, Apodemus flavicollis (Rodentia, Muridae) and Myodes glareolus (Rodentia, Cricetidae). Mammalian Biology—Zeitschrift Für Säugetierkunde, 83, 51–63. https://doi.org/10.1016/j.mambio.2016.12.004

    Article  Google Scholar 

  56. Lauder, G. V. (1996). The argument from design. In M. R. Rose & G. V. Lauder (Eds.), Adaptation (pp. 55–91). Academic Press.

    Google Scholar 

  57. Lavilla, E. O., Ponssa, M. L., Baldo, D., Basso, N., Bosso, A., Cespedez, J., Chebez, J. C., Faivovich, J., Ferrari, L., Lajmanovich, R., Langone, J. A., Peltzer, P., Úbeda, C., Vaira, M., & Vera Candioti, F. (2000). Categorización de los Anfibios de Argentina. In E. O. Lavilla, E. Richard, & G. J. Scrocchi (Eds.), Categorización de los Anfibios y Reptiles de la República Argentina (pp. 11–34). Asociación Herpetológica Argentina.

    Google Scholar 

  58. Lehr, E., Kohler, G., Aguilar, C., & Ponce, E. (2001). New Species of Bufo (Anura: Bufonidae) from Central Peru. Copeia, 2001, 216–223.

    Article  Google Scholar 

  59. Lindquist, E. D., Sapoznick, S. A., Griffith-Rodriguez, E. J., Johantgen, P. B., & Criswell, J. M. (2007). Nocturnal position in the Panamanian golden frog Atelopus zeteki (Anura, Bufonidae), with notes on fluorescent pigment tracking. Phyllomedusa, 6, 37–44.

    Article  Google Scholar 

  60. Losos, J. B., Schoener, T. W., & Spiller, D. A. (2004). Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature, 432, 505–508.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. Maddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.61. Retrieved from http://www.mesquiteproject.org

  62. Manzano, A. S., Abdala, V., & Herrel, A. (2008). Morphology and function of the forelimb in arboreal frogs: Specializations for grasping ability? Journal of Anatomy, 213, 296–307.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Manzano, A. S., Fabrezi, M., & Vences, M. (2007). Intercalary elements, treefrogs, and the early differentiation of a complex system in the Neobatrachia. Anatomical Record, 290, 1551–1567.

    Article  Google Scholar 

  64. Manzano, A. S., Fontanarrosa, G., & Abdala, V. (2018). Manual and pedal grasping among anurans: A review of relevant concepts with empirical approaches. Biological Journal of the Linnean Society, 127, 598–610.

    Article  Google Scholar 

  65. Manzano, A. S., Fontanarrosa, G., Prieto, Y., & Abdala, V. (2017). La prensilidad en anfibios y reptiles: Perspectivas evolutivas basadas en la anatomía y la función. In V. Abdala, A. Manzano, & A. I. Vassallo (Eds.), Morfología de Vertebrados: Hacia una integración de conceptos, metodologías y grupos de investigación del país (pp. 59–81). EUDEM Editorial Universitaria de Mar del Plata.

    Google Scholar 

  66. Manzano, A. S., Herrel, A., Fabre, A. C., & Abdala, V. (2017). Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. Journal of Anatomy, 231, 38–58.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Müller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.

    Article  Google Scholar 

  68. Muzio, R. N., Pistone Creydt, V., Iurman, M., Rinaldi, M., Sirani, B., & Papini, M. R. (2011). Incentive or habit learning in amphibians? PLoS ONE, 6(11), e25798. https://doi.org/10.1371/journal.pone.0025798

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Muzio, R. N., Segura, E. T., & Papini, M. R. (1992). Effect of schedule and magnitude of reinforcement on instrumental acquisition and extinction in the toad, Bufo arenarum. Learning and Motivation, 23, 406–429.

    Article  Google Scholar 

  70. Napier, J. R. (1993). Hands. Princeton University Press.

    Google Scholar 

  71. Odling-Smee, J., Laland, K., & Feldman, M. (2003). Niche construction: The neglected process in evolution. Princeton University Press.

    Google Scholar 

  72. Ortiz, D. A., & Coloma, L. A. (2018). Rhinella dapsilis. In S. R. Ron, A. Merino-Viteri, & D. A. Ortiz (Eds.), Anfibios del Ecuador. Version 2019.0. Museo de Zoología.Pontificia Universidad Católica del Ecuador.

    Google Scholar 

  73. Ortiz, D. A., Ron, S. R., Coloma, L. A., & Páez-Rosales, N. (2018). Rhinella margaritifera. In S. R. Ron, A. Merino-Viteri, & D. A. Ortiz (Eds.), Anfibios del Ecuador. Version 2019.0. Museo de Zoología.Pontificia Universidad Católica del Ecuador.

    Google Scholar 

  74. Padial, J. M., Chaparro, J. C., Köhler, J., & De la Riva, I. (2009). Rediscovery, resurrection and redescription of Rhinella leptoscelis (Boulenger, 1912) (Anura: Bufonidae). Zootaxa, 2115, 56–64.

    Article  Google Scholar 

  75. Pereyra, M. O., Baldo, D., Blotto, B. L., Iglesias, P. P., Thomé, M. T. C., Haddad, C. F. B., Barrio-Amorós, C., Ibáñez, R., & Faivovich, J. (2015). Phylogenetic relationships of toads of the Rhinella granulosa group (Anura: Bufonidae): A molecular perspective with comments on hybridization and introgression. Cladistics, 32(1), 36–53. https://doi.org/10.1111/cla.12110

    Article  Google Scholar 

  76. Pizzatto, L., Both, C., Brown, G., & Shine, R. (2017). The accelerating invasion: Dispersal rates of cane toads at an invasion front compared to an already-colonized location. Evolutionary Ecology, 31, 533–545. https://doi.org/10.1007/s10682-017-9896-1

    Article  Google Scholar 

  77. Pramuk, J. B., Robertson, T., Sites, J. W., Jr., & Noonan, B. P. (2008). Around the world in 10 million years: Biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Global Ecology and Biogeography, 17, 72–83.

    Google Scholar 

  78. Puddington, M. M., Papini, M. R., & Muzio, R. N. (2018). Duration of extinction trials as a determinant of instrumental extinction in terrestrial toads (Rhinella arenarum). Animal Cognition, 21, 165–174. https://doi.org/10.1007/s10071-017-1149-8

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rezende Oliveira, S., Fachi, M. B., Silva, D. A., & Morais, A. R. (2017). Predation on Rhinella mirandaribeiroi (Gallardo, 1965) (Anura; Bufonidae) by a Neotropical snake, including a list with predation events for species of the genus Rhinella. Herpetological Notes, 10, 151–155.

    Google Scholar 

  80. Rodríguez, L. O., Cordova, J. H., & Icochea, J. (1993). Lista preliminar de los anfibios del Peru. Publicaciones Del Museo De Historia Natural U.n.m.s.m., 45, 1–22.

    Google Scholar 

  81. SIB Sistema de Información de Biodiversidad (2020). Rhinella spinulosa. Administración de Parques Nacionales, Argentina. Checklist database. Accessed 3 June 2020. https://sib.gob.ar/especies/rhinella-spinulosa

  82. Silvano, D., Azevedo-Ramos, C., La Marca, E., Narvaes, P., di Tada, I., Baldo, D., Solís, F., Ibáñez, R., Jaramillo, C., Fuenmayor, Q., & Hardy, J. (2010). Rhinella granulosa (errata version published in 2016). The IUCN Red List of Threatened Species, 2010, e.T54655A86595684.

    Google Scholar 

  83. Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2015). Goal orientation by geometric and feature cues: Spatial learning in the terrestrial toad Rhinella arenarum. Animal Cognition, 18(1), 315–323. https://doi.org/10.1007/s10071-014-0802-8

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2017). Slope-based and geometric encoding of a goal location by the terrestrial toad (Rhinella arenarum). Journal of Comparative Psychology, 131, 362–369. https://doi.org/10.1037/com0000084

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2019). Mating call as a spatial signal and its brain representation in the terrestrial toad Rhinella arenarum. Brain, Behavior and Evolution, 94, 7–17. https://doi.org/10.1159/000504122

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sustaita, D., Pouydebat, E., Manzano, A., Abdala, V., Hertel, F., & Herrel, A. (2013). Getting a grip on tetrapod grasping: Form, function, and evolution. Biological Reviews of the Cambridge Philosophical Society, 88, 380–405.

    PubMed  Article  PubMed Central  Google Scholar 

  87. Thomas, D., Hiscox, J., & Dixon, B. J. (2016). 3D scanning and printing skeletal tissues for anatomy education. Journal of Anatomy, 229(3), 473–481.

    PubMed  PubMed Central  Article  Google Scholar 

  88. Toledo, L. F., Ribeiro, R. S., & Haddad, C. F. B. (2007). Anurans as prey: An exploratory analysis and size relationships between predators and their prey. Journal of Zoology, 271, 170–177.

    Article  Google Scholar 

  89. Torres-Suárez, O. L., & Vargas-Salina, F. (2014). Rhinella humboldti (Gallardo 1965). Catálogo De Anfibios y Reptiles De Colombia, 2(2), 19–23.

    Google Scholar 

  90. Tulli, M. J., Abdala, V., & Cruz, F. B. (2012). Effects of different substrates on the sprint performance of lizards. The Journal of Experimental Biology, 215, 774–784.

    PubMed  Article  PubMed Central  Google Scholar 

  91. Urra, F. A. (2013). Síntesis del conocimiento actual sobre los sapos Rhinella atacamensis, R. arunco y R. spinulosa. La Chiricoca, 16, 4–15.

    Google Scholar 

  92. Varela-Jaramillo, A., & Ron, S. R. (2018). Rhinella poeppigii. In S. R. Ron, A. Merino-Viteri, & D. A. Ortiz (Eds.), Anfibios del Ecuador. Version 2019.0. Museo de Zoología.Pontificia Universidad Católica del Ecuador.

    Google Scholar 

  93. Vassallo, A. I., Becerra, F., Echeverría, A. I., Díaz, A. O., Longo, M. V., Cohen, M., & Buezas, G. N. (2019). Analysis of the form-function relationship: Digging behavior as a case study. Journal of Mammalian Evolution. https://doi.org/10.1007/s10914-019-09492-7

    Article  Google Scholar 

  94. Wagley, R. (2019). Species Account Citation: AmphibiaWeb Rhinella schneideri: Cururu Toad, Rococo Toad. University of California.

    Google Scholar 

  95. Wassersug, R. J. (1976). A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Staining Techniques, 51, 131–134.

    CAS  Article  Google Scholar 

  96. West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences (USA), 102, 6543–6549.

    CAS  Article  Google Scholar 

  97. Williams León de Castro, M. W., & Rey Sánchez, D. R. (2014). Primer registro de la presencia y reproducción del anuro Rhinella poeppigii (Tschudi, 1845) en un área antrópica del Departamento de Lima, Perú. Ecología Aplicada, 13(2), 109–115.

  98. Wyles, J. S., Kunkel, J. G., & Wilson, A. C. (1983). Birds, behavior, and anatomical evolution. Proceedings of the National Academy of Sciences USA, 80(14), 4394–4397.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

María Florencia Daneri helped in the early design of the experimental device and Marcelo Ibarzabal helped to build it. Federico Becerra helped capturing specimens in the field. Martina Vassallo helped during photograph of behavioral recording. Silvia Etcheverry helped with the specimens of the herpetological collection of CICyTTP-CONICET (Diamante). Martín Pereyra (IBS CONICET, Argentina) and Julián Faivovich (MACN CONICET, Argentina) suggested useful literature. We are also grateful to Mariana Chuliver Pereyra and Miriam C. Vera for contributing with photos used in this study.

Funding

This research was funded in part by Grants PICT 4300-2016 (FONCYT) and UBACYT 20020160100068BA (University of Buenos Aires), Argentina, to RNM; by Grants PIP 2014-2016 (CONICET) No. 11220130100375 and EXA918/18 (University of Mar del Plata) to AIV; and by Grants PICT 2772-2016, PICT 0832-2018 (FONCYT) and PIP 0389 (CONICET) to VA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rubén N. Muzio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vassallo, A.I., Manzano, A., Abdala, V. et al. Can Anyone Climb? The Skills of a Non-specialized Toad and its Bearing on the Evolution of New Niches. Evol Biol (2021). https://doi.org/10.1007/s11692-021-09539-9

Download citation

Keywords

  • Anurans
  • Grasping and climbing
  • Muscle–tendon morphology
  • Terrestrial toad Rhinella arenarum
  • Evolution of new niches