Skip to main content
Log in

Genetic Diversification of Adelphobates quinquevittatus (Anura: Dendrobatidae) and the Influence of Upper Madeira River Historical Dynamics

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The effect of large Amazonian rivers as barriers to distribution of species and gene flow has been the subject of debate for more than a century. The Madeira River is the largest tributary of the Amazon River, with the region comprising its basin undergoing complex changes from the Pliocene through the Holocene. Accordingly, the evolution of its drainage seems to have been an important factor in the biological diversification of different taxa. We characterize the phylogeographic pattern of Adelphobates quinquevittatus, focusing on the role of the Madeira River and the environmental changes in the region, as potential barriers to gene flow. For this, we used sequences of two mitochondrial genes from 65 individuals sampled in 15 locations. We identify population structure partially related to the current Madeira River configuration. However the most upstream session does not represent a historical barrier, suggesting that may have attained its current geomorphological configuration recently. Divergence among clades began in the last 1 million years, coinciding with documented changes in this landscape, and may be related to river dynamics associated with the presence of open vegetation areas. This phylogeographic pattern supports the dynamism of the drainage, and the historical complexity of the upper Madeira River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Absy, M. L., & van der Hammen, T. (1976). Some palaeoecological data from Rondônia, southern part of the Amazon Basin. Acta Amazonica, 6(3), 293–299.

    Article  Google Scholar 

  • Adamy, A. (2010). Geodiversidade do estado de Rondônia. CPRM.

  • Adamy. A., & Romanini, S. J. (1990). Geologia da Região Porto Velho-Abunã. CPRM.

  • Akey, J. M., Zhang, G., Zhang, K., Jin, L., & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro, J. W. L., Boubli, J. P., Paim, F. P., Ribas, C. C., da Silva, M. N. F., Messias, M. R., Röhe, F., Mercês, M. P., Silva Júnior, J. S., Silva, C. R., Pinho, G. M., Koshkarian, G., Nguyen, M. T. T., Harada, M. L., Rabelo, R. M., Queiroz, H. L., Alfaro, M. E., & Farias, I. P. (2015). Biogeography of squirrel monkeys (genus Saimiri): South-central Amazon origin and rapid pan-Amazonian diversification of a lowland primate. Molecular Phylogenetics and Evolution, 82, 436–454.

    Article  PubMed  Google Scholar 

  • Amezquita, A., Lima, A. P., Jehle, R., Castellanos, L., Ramos, O., Crawford, A. J., Gasser, H., & Hoedl, W. (2009). Calls, colours, shape, and genes: A multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biological Journal of the Linnean Society, 98(4), 826–838.

    Article  Google Scholar 

  • Ayres, J. M., & Clutton-Brock, T. H. (1992). River boundaries and species range size in Amazonian primates. The American Naturalist, 140(3), 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian river. Journal of Ornithology, 145(3), 199–205.

    Article  Google Scholar 

  • Bernarde, P. S. (2007). Ambientes e temporada de vocalização da anurofauna no Município de Espigão do Oeste, Rondônia, Sudoeste da Amazônia: Brasil (Amphibia: Anura). Biota Neotropica, 7(2), 87–92.

    Article  Google Scholar 

  • Bernarde, P. S., & Macedo, L. C. (2008). Impacto do desmatamento e formação de pastagens sobre a anurofauna de serapilheira em Rondônia. Iheringia. Série Zoologia, 98(4), 454–459.

    Article  Google Scholar 

  • Bertani, T. C., de Fátima Rossetti, D., & Albuquerque, P. C. G. (2013). Object-based classification of vegetation and terrain topography in Southwestern Amazonia (Brazil) as a tool for detecting ancient fluvial geomorphic features. Computers & Geosciences, 60, 41–50.

    Article  Google Scholar 

  • Bertani, T. C., Rossetti, D. F., Hayakawa, E. H., & Cohen, M. C. (2015). Understanding Amazonian fluvial rias based on a Late Pleistocene-Holocene analog. Earth Surface Processes and Landforms, 40(3), 285–292.

    Article  Google Scholar 

  • Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., de Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, ..., Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4), 1–28.

  • Byrne, H., Lynch Alfaro, J. W., Sampaio, I., Farias, I., Schneider, H., Hrbek, T., & Boubli, J. P. (2018). Titi monkey biogeography: Parallel Pleistocene spread by Plecturocebus and Cheracebus into a post-Pebas Western Amazon. Zoologica Scripta, 47(5), 499–517.

    Article  Google Scholar 

  • Caldwell, J. P. (1993). Brazil nut fruit capsules as phytotelmata: Interactions among anuran and insect larvae. Canadian Journal of Zoology, 71(6), 1193–1201.

    Article  Google Scholar 

  • Caldwell, J. P., & de Araujo, M. C. (1998). Cannibalistic interactions resulting from indiscriminate predatory behavior in tadpoles of poison frogs (Anura: Dendrobatidae) 1. Biotropica, 30(1), 92–103.

    Article  Google Scholar 

  • Caldwell, J. P., & de Araújo, M. C. (2004). Historical and ecological factors influence survivorship in two clades of phytotelm-breeding frogs (Anura: Bufonidae, Dendrobatidae). Miscellaneous Publications Museum of Zoology University of Michigan, 193, 11–21.

    Google Scholar 

  • Caldwell, J. P., & de Oliveira, V. R. (1999). Determinants of biparental care in the spotted poison frog, Dendrobates vanzolinii (Anura: Dendrobatidae). Copeia, 3, 565–575.

    Article  Google Scholar 

  • Caldwell, J. P., & Lima, A. P. (2003). A new Amazonian species of Colostethus (Anura: Dendrobatidae) with a nidicolous tadpole. Herpetologica, 59(2), 219–234.

    Article  Google Scholar 

  • Caldwell, J. P., & Myers, C. W. (1990). A new poison frog from Amazonian Brazil, with further revision of the quinquevittatus group of Dendrobates. American Museum of Natural History, 2988, 1–21.

    Google Scholar 

  • Che, J., Chen, H. M., Yang, J. X., Jin, J. Q., Jiang, K. E., Yuan, Z. Y., & Zhang, Y. P. (2012). Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12(2), 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Cohn-Haft, M., Pacheco, A. M., Bechtoldt, C. L., Torres, M. F. N. M., Fernandes, A. M., Sardelli, C. H., & Macêdo, I. T. (2007). Inventário ornitológico. In L. R. Py-Daniel, C. P. de Deus, A. L. Henriques, D. M. Pimpão, & O. M. Ribeiro (Eds.), Biodiversidade do médio Madeira: Bases científicas para propostas de conservação (pp. 145–178). INPA.

  • Corander, J., Marttinen, P., Sirén, J., & Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9(539), 1–14.

    Google Scholar 

  • Cracraft, J. (1985). Historical biogeography and patterns of differentiation within the South American avifauna: Areas of endemism. Ornithological Monographs, 36, 49–84.

    Article  Google Scholar 

  • De La Riva, I., Köhler, J., Lötters, S., & Reichle, S. (2000). Ten years of research on Bolivian amphibians: Updated checklist, distribution, taxonomic problems, literature and iconography. Revista Española Herpetología, 14, 19–164.

    Google Scholar 

  • De La Riva, I., & Reichle, S. (2014). Diversity and conservation of the amphibians of Bolivia. Herpetological Monographs, 28(1), 46–65.

    Article  Google Scholar 

  • Dias-Terceiro, R. G., Kaefer, I. L., de Fraga, R., de Araújo, M. C., Simões, P. I., & Lima, A. P. (2015). A matter of scale: Historical and environmental factors structure anuran assemblages from the Upper Madeira River, Amazonia. Biotropica, 47(2), 259–266.

    Article  Google Scholar 

  • Drummond, A. J., Rambaut, A., Shapiro, B. E. T. H., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5), 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(113), 1–19.

    Google Scholar 

  • Eizirik, E., Kim, J. H., Menotti-Raymond, M., Crawshaw, P. G., Jr., O’Brien, S. J., & Johnson, W. E. (2001). Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Molecular Ecology, 10(1), 65–79.

    Article  CAS  PubMed  Google Scholar 

  • Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., & Barbarand, J. (2010). The Nazca Ridge and uplift of the Fitzcarrald Arch: Implications for regional geology in northern South America. In C. Hoorn, & F. Wesselingh (Eds.), Amazonia: Landscape and species evolution: A look into the past (pp. 89–100). Wiley-Blackwell.

  • Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., Regard, V. P. O., Antoine, P. O., Salas-Gismondi, R., & Bolanos, R. (2007). How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology, 35(6), 515–518.

    Article  Google Scholar 

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.

    Article  PubMed  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131(2), 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feitosa, Y. O., Absy, M. L., Latrubesse, E. M., & Stevaux, J. C. (2015). Late Quaternary vegetation dynamics from central parts of the Madeira River in Brazil. Acta Botanica Brasilica, 29(1), 120–128.

    Article  Google Scholar 

  • Fernandes, A. M., Gonzalez, J., Wink, M., & Aleixo, A. (2013). Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: Widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Molecular Phylogenetics and Evolution, 66(1), 270–282.

    Article  PubMed  Google Scholar 

  • Fernandes, A. M., Wink, M., & Aleixo, A. (2012). Phylogeography of the chestnut-tailed antbird (Myrmeciza hemimelaena) clarifies the role of rivers in Amazonian biogeography. Journal of Biogeography, 39(8), 1524–1535.

    Article  Google Scholar 

  • Fernandes, A. M., Wink, M., Sardelli, C. H., & Aleixo, A. (2014). Multiple speciation across the Andes and throughout Amazonia: The case of the spot-backed antbird species complex (Hylophylax naevius/Hylophylax naevioides). Journal of Biogeography, 41(6), 1094–1104.

    Article  Google Scholar 

  • Ferreira, A. S., Lima, A. P., Jehle, R., Ferrão, M., & Stow, A. (2020). The influence of environmental variation on the genetic structure of a poison frog distributed across continuous Amazonian rainforest. Journal of Heredity, 111(5), 457–470.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, M., Aleixo, A., Ribas, C. C., & Santos, M. P. D. (2017). Biogeography of the Neotropical genus Malacoptila (Aves: Bucconidae): The influence of the Andean orogeny, Amazonian drainage evolution and palaeoclimate. Journal of Biogeography, 44(4), 748–759.

    Article  Google Scholar 

  • Fouquet, A., Courtois, E. A., Baudain, D., Lima, J. D., Souza, S. M., Noonan, B. P., & Rodrigues, M. T. (2015). The trans-riverine genetic structure of 28 Amazonian frog species is dependent on life history. Journal of Tropical Ecology, 31(4), 361–373.

    Article  Google Scholar 

  • Fouquet, A., Noonan, B. P., Rodrigues, M. T., Pech, N., Gilles, A., & Gemmell, N. J. (2012). Multiple quaternary refugia in the eastern Guiana Shield revealed by comparative phylogeography of 12 frog species. Systematic Biology, 61(3), 461.

    Article  PubMed  Google Scholar 

  • French, C. M., Deutsch, M. S., Chávez, G., Almora, C. E., & Brown, J. L. (2019). Speciation with introgression: Phylogeography and systematics of the Ameerega petersi group (Dendrobatidae). Molecular Phylogenetics and Evolution, 138, 31–42.

    Article  PubMed  Google Scholar 

  • Frost, D. R. (2015). Amphibian species of the world: An online reference. Version 6.0 Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.Html. American Museum of Natural History, New York, USA. Accessed March 27, 2015.

  • Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascon, C., Lougheed, S. C., & Bogart, J. P. (1998). Patterns of genetic population differentiation in four species of Amazonian frogs: A test of the riverine barrier hypothesis1. Biotropica, 30(1), 104–119.

    Article  Google Scholar 

  • Godinho, M. B., & Da Silva, F. R. (2018). The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, 8(1), 1–11.

    Article  Google Scholar 

  • Gómez, T. J., Schobbenhaus, C., & Montes Ramírez, N. E. (2019). Geological map of South America. Scale, 1:5.000.000.

  • Gottsberger, G., & Morawetz, W. (1986). Floristic, structural and phytogeographical analysis of the savannas of Humaitá (Amazonas). Flora, 178(1), 41–71.

    Article  Google Scholar 

  • Grant, T., Frost, D. R., Caldwell, J. P., Gagliardo, R. O. N., Haddad, C. F., Kok, P. J., Means, D. B., Noonan, B. P., Schargel, W. E., & Wheeler, W. C. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 2006(299), 1–262.

    Article  Google Scholar 

  • Grant, T., Rada, M., Anganoy-Criollo, M., Batista, A., Dias, P. H., Jeckel, A. M., Machado, D. J., & Rueda-Almonacid, J. V. (2017). Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). South American Journal of Herpetology, 12(s1), 1–93.

    Article  Google Scholar 

  • Grant, W. S. (2015). Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. Journal of Heredity, 106(4), 333–346.

    Article  PubMed  Google Scholar 

  • Grant, W. S., Liu, M., Gao, T., & Yanagimoto, T. (2012). Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Molecular Phylogenetics and Evolution, 65(1), 203–212.

    Article  PubMed  Google Scholar 

  • Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165(3889), 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Haffer, J. (1974). Avian speciation in tropical South America, with a systematic survey of the toucans (Ramphastidae) and jacamars (Galbulidae). Nuttal Ornithological Club.

  • Haffer, J. (1978). Distribution of Amazon forest birds. Bonner Zoologische Beiträge, 29(1–3), 38–78.

    Google Scholar 

  • Haffer, J. (1992). Ciclos de tempo e indicadores de tempos na história da Amazônia. Estudos Avançados, 6(15), 7–39.

    Article  Google Scholar 

  • Haffer, J. R. (1997). Alternative models of vertebrate speciation in Amazonia: An overview. Biodiversity & Conservation, 6, 451–476.

    Article  Google Scholar 

  • Haffer, J. (2008). Hypotheses to explain the origin of species in Amazonia. Brazilian Journal of Biology, 68(4), 917–947.

    Article  CAS  Google Scholar 

  • Haffer, J., & Prance, G. T. (2002). Impulsos climáticos da evolução na Amazônia durante o Cenozóico: Sobre a teoria dos Refúgios da diferenciação biótica. Estudos Avançados, 16(46), 175–206.

    Article  Google Scholar 

  • Hauswaldt, J. S., Ludewig, A. K., Vences, M., & Pröhl, H. (2011). Widespread co-occurrence of divergent mitochondrial haplotype lineages in a Central American species of poison frog (Oophaga pumilio). Journal of Biogeography, 38(4), 711–726.

    Article  Google Scholar 

  • Hayakawa, E. H., & de Fátima Rossetti, D. (2013). Caracterização da rede de drenagem da bacia do médio e baixo rio Madeira. Revista Brasileira de Geomorfologia, 13(4), 401–418.

    Article  Google Scholar 

  • Hayakawa, E. H., & Rossetti, D. F. (2015). Late quaternary dynamics in the Madeira river basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis. Anais da Academia Brasileira de Ciências, 87(1), 29–49.

    Article  PubMed  Google Scholar 

  • Hayakawa, E. H., Rossetti, D. F., & Valeriano, M. M. (2010). Applying DEM-SRTM for reconstructing a late Quaternary paleodrainage in Amazonia. Earth and Planetary Science Letters, 297(1–2), 262–270.

    Article  CAS  Google Scholar 

  • Heled, J., & Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8(1), 1–15.

    Article  CAS  Google Scholar 

  • Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132(2), 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junk, W. J. (1984). Ecology of the várzea, floodplain of Amazonian whitewater rivers. In H. Sioli (Ed.), The Amazon. Monographiae Biologicae (Vol. 56, pp. 215–243). Springer.

  • Kaefer, I. L., Tsuji-Nishikido, B. M., Mota, E. P., Farias, I. P., & Lima, A. P. (2013). The early stages of speciation in Amazonian forest frogs: Phenotypic conservatism despite strong genetic structure. Evolutionary Biology, 40(2), 228–245.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773.

    CAS  PubMed  Google Scholar 

  • Latrubesse, E. M. (2002). Evidence of Quaternary palaeohydrological changes in middle Amazônia: The Aripuanã-Roosevelt and Jiparaná" fans". Zeitschrift Für Geomorphologie, Supplementband, 129, 61–72.

    Google Scholar 

  • Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A., Ribas, C. C., Norgaard, R. B., Filizola, N., Ansar, A., Flyvbjerg, B., & Stevaux, J. C. (2017). Damming the rivers of the Amazon basin. Nature, 546(7658), 363–369.

    Article  CAS  PubMed  Google Scholar 

  • Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116.

    Article  Google Scholar 

  • Lima, A. P., Caldwell, J. P., Biavati, G., & Montanarin, A. (2010). A new species of Allobates (Anura: Aromobatidae) from Paleovárzea Forest in Amazonas Brazil. Zootaxa, 2337(1), 1–17.

    Article  Google Scholar 

  • Lötters, S., & Vences, M. (2000). Bemerkungen zur Nomenklatur und Taxonomie peruanischer Pfeilgiftfrösche. Salamandra, 36, 247–260.

    Google Scholar 

  • Lougheed, S. C., Gascon, C., Jones, D. A., Bogart, J. P., & Boag, P. T. (1999). Ridges and rivers: A test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society of London B: Biological Sciences, 266(1431), 1829–1835.

    Article  CAS  Google Scholar 

  • Maia, G. F., Lima, A. P., & Kaefer, I. L. (2017). Not just the river: Genes, shapes, and sounds reveal population-structured diversification in the Amazonian frog Allobates tapajos (Dendrobatoidea). Biological Journal of the Linnean Society, 121(1), 95–108.

    Article  Google Scholar 

  • Martins, M., & Haddad, C. F. (1990). On the identity of Dendrobates quinquevittatus (Anura: Dendrobatidae). Memórias do Instituto Butantan, 52, 53–56.

    Google Scholar 

  • Meirmans, P. G., & Hedrick, P. W. (2011). Assessing population structure: FST and related measures. Molecular Ecology Resources, 11(1), 5–18.

    Article  PubMed  Google Scholar 

  • Montanarin, A., Kaefer, I. L., & Lima, A. P. (2011). Courtship and mating behaviour of the brilliant-thighed frog Allobates femoralis from Central Amazonia: Implications for the study of a species complex. Ethology Ecology & Evolution, 23(2), 141–150.

    Article  Google Scholar 

  • Morais, L. J., Pavan, D., Barros, M. C., & Ribas, C. C. (2016). The combined influence of riverine barriers and flooding gradients on biogeographical patterns for amphibians and squamates in south-eastern Amazonia. Journal of Biogeography, 43(11), 2113–2124.

    Article  Google Scholar 

  • Mueller, R. L. (2006). Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Systematic Biology, 55(2), 289–300.

    Article  PubMed  Google Scholar 

  • Myers, C. W. (1982). Spotted poison frogs: Descriptions of three new Dendrobates from Western Amazonia, and resurrection of a lost species from “Chiriqui”. American Museum of Natural History. American Museum Novitates, 2721, 1–23.

    Google Scholar 

  • Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2017). Wide but not impermeable: Testing the riverine barrier hypothesis for an Amazonian plant species. Molecular Ecology, 26(14), 3636–3648.

    Article  CAS  PubMed  Google Scholar 

  • Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2019). Tangled banks: A landscape genomic evaluation of Wallace’s Riverine barrier hypothesis for three Amazon plant species. Molecular Ecology, 28(5), 980–997.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. (1990). Molecular evolutionary genetics. . Columbia University Press.

    Google Scholar 

  • Nielsen, R. (2000). Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics, 154(2), 931–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, R. (2001). Statistical tests of selective neutrality in the age of genomics. Heredity, 86(6), 641–647.

    Article  CAS  PubMed  Google Scholar 

  • Noonan, B. P., & Gaucher, P. (2006). Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Molecular Ecology, 15(14), 4425–4435.

    Article  CAS  PubMed  Google Scholar 

  • Noonan, B. P., & Wray, K. P. (2006). Neotropical diversification: The effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography, 33(6), 1007–1020.

    Article  Google Scholar 

  • Ortiz, D. A., Lima, A. P., & Werneck, F. P. (2018). Environmental transition zone and rivers shape intraspecific population structure and genetic diversity of an Amazonian rain forest tree frog. Evolutionary Ecology, 32(4), 359–378.

    Article  Google Scholar 

  • Palumbi, S. R., Martin, A. P., Kessing, B., & McMillan, W. O. (1991). Detecting population structure using mitochondrial DNA. In A. R. Hoelzel (Ed.), The genetic ecology of whales and dolphins (Vol. 13, pp. 271–278). International Whale Commission. Special Publication.

  • Pröhl, H. (2005). Territorial behavior in dendrobatid frogs. Journal of Herpetology, 39(3), 354–365.

    Article  Google Scholar 

  • Py-Daniel, L. R. (2007). Caracterização da área amostrada. In L. R. Py-Daniel, C. P. de Deus, A. L. Henriques, D. M. Pimpão, & O. M. Ribeiro (Eds.), Biodiversidade do médio Madeira: Bases científicas para propostas de conservação (pp. 35–42). INPA.

  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543–583.

    Article  PubMed  Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regard, V., Lagnous, R., Espurt, N., Darrozes, J., Baby, P., Roddaz, M., Calderon, Y., & Hermoza, W. (2009). Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): A response to the Nazca Ridge subduction. Geomorphology, 107(3–4), 107–117.

    Article  Google Scholar 

  • Ribas, C. C., Aleixo, A., Gubili, C., d’Horta, F. M., Brumfield, R. T., & Cracraft, J. (2018). Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): Implications for the evolution of Amazonian landscapes during the Quaternary. Journal of Biogeography, 45(4), 917–928.

    Article  Google Scholar 

  • Ribas, C. C., Aleixo, A., Nogueira, A. C., Miyaki, C. Y., & Cracraft, J. (2012). A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences, 279(1729), 681–689.

    Article  PubMed  Google Scholar 

  • Roberts, J. L., Brown, J. L., von May, R., Arizabal, W., Presar, A., Symula, R., & Schulte, R. (2006). Phylogenetic relationships among poison frogs of the genus Dendrobates (Dendrobatidae): A molecular perspective from increased taxon sampling. The Herpetological Journal, 16(4), 377–385.

    Google Scholar 

  • Rodrigues, M. T., & Azevedo-Ramos, C. (2004). Adelphobates quinquevittatus. The IUCN Red List of Threatened Species 2004. Downloaded on 05 October 2020.

  • Rojas, D., Lima, A. P., Momigliano, P., Simões, P. I., Dudaniec, R. Y., de Avila-Pires, T. C. S., Hoogmoed, M. S., da Cunha Bitar, Y. O., Kaefer, I. L., Amézquita, A., & Stow, A. (2020). The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity, 124(3), 439–456.

    Article  CAS  PubMed  Google Scholar 

  • Roland, A. B., Santos, J. C., Carriker, B. C., Caty, S. N., Tapia, E. E., Coloma, L. A., & O’Connell, L. A. (2017). Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador. Ecology and Evolution, 7(22), 9750–9762.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossetti, D. F., Bertani, T. C., Zani, H., Cremon, E. H., & Hayakawa, E. H. (2012). Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts. Geomorphology, 177, 74–92.

    Article  Google Scholar 

  • Rossetti, D. F., Cohen, M. C., Bertani, T. C., Hayakawa, E. H., Paz, J. D., Castro, D. F., & Friaes, Y. (2014). Late Quaternary fluvial terrace evolution in the main southern Amazonian tributary. CATENA, 116, 19–37.

    Article  Google Scholar 

  • Rossetti, D. F., Cohen, M. C., & Pessenda, L. C. (2017). Vegetation change in southwestern Amazonia (Brazil) and relationship to the late Pleistocene and Holocene climate. Radiocarbon, 59(1), 69–89.

    Article  CAS  Google Scholar 

  • Rossetti, D. F., Cohen, M. C., Tatumi, S. H., Sawakuchi, A. O., Cremon, É. H., Mittani, J. C., Bertani, T. C., Munita, J. C. A. S., Tudela, D. R. G., Yee, M., & Moya, G. (2015). Mid-Late Pleistocene OSL chronology in western Amazonia and implications for the transcontinental Amazon pathway. Sedimentary Geology, 330, 1–15.

    Article  Google Scholar 

  • Rossetti, D. F., Gribel, R., Cohen, M. C. L., de Morisson Valeriano, M., Tatumi, S. H., & Yee, M. (2019). The role of Late Pleistocene-Holocene tectono-sedimentary history on the origin of patches of savanna vegetation in the middle Madeira River, southwest of the Amazonian lowlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 526, 136–156.

    Article  Google Scholar 

  • Rossetti, D. F., Gribel, R., Toledo, P. M., Tatumi, S. H., Yee, M., Tudela, D. R., Munita, C. S., & de Souza Coelho, L. (2018). Unfolding long-term Late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere, 9(10), e02457.

    Article  Google Scholar 

  • Ruokolainen, K., Moulatlet, G. M., Zuquim, G., Hoorn, C., & Tuomisto, H. (2019). Geologically recent rearrangements in central Amazonian river network and their importance for the riverine barrier hypothesis. Frontiers of Biogeography, 11(3), e45046.

    Article  Google Scholar 

  • Saadi, A. (1993). Neoteclônica da Plataforma Brasileira: Esboço e interpretações preliminares. Geonomos, 1, 1–15.

    Google Scholar 

  • Sander, N. L., Pérez-Zavala, F., da Silva, C. J., Arruda, J. C., Pulido, M. T., Barelli, M. A., Rossi, A. B., Viana, A. P., Boechat, M. S. B., Bacon, C. D., & Cibrián-Jaramillo, A. (2018). Rivers shape population genetic structure in Mauritia flexuosa (Arecaceae). Ecology and Evolution, 8(13), 6589–6598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos, J. C., Coloma, L. A., Summers, K., Caldwell, J. P., Ree, R., & Cannatella, D. C. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biology, 7(3), e1000056.

    Article  PubMed Central  CAS  Google Scholar 

  • Silva, S. M., Peterson, A. T., Carneiro, L., Burlamaqui, T. C. T, Ribas, C. C., Sousa-Neves, T., Miranda, L. S., Fernandes, A. M., d'Horta, F. M., Araújo-Silva, L. E., Batista, R., Bandeira, C. H. M. M., Dantas, S. M., Ferreira, M., Martins, D. M., Oliveira, J., Rocha, T. C., Sardelli, C. H., Thom, G., ..., Aleixo, A. (2019). A dynamic continental moisture gradient drove Amazonian bird diversification. Science Advances, 5(7): eaat5752.

  • Silva, Y. B. D. S. E., Ribeiro, B. R., Thiesen Brum, F., Soares-Filho, B., Loyola, R., & Michalski, F. (2018). Combined exposure to hydroelectric expansion, climate change and forest loss jeopardies amphibians in the Brazilian Amazon. Diversity and Distributions, 24(8), 1072–1082.

    Article  Google Scholar 

  • Silverstone, P. A. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Revisión de las ranas venenosas del género Dendrobates Wagler. Natural History, 21, 1–55.

    Google Scholar 

  • Simões, P. I. (2010). Diversificação do complexo Allobates femoralis (Anura, Dendrobatidae) em florestas da Amazônia brasileira: Desvendando padrões atuais e históricos. D. Phil. Thesis, INPA, Manaus, Brazil.

  • Simões, P. I., Lima, A. P., & Farias, I. P. (2012). Restricted natural hybridization between two species of litter frogs on a threatened landscape in southwestern Brazilian Amazonia. Conservation Genetics, 13(4), 1145–1159.

    Article  Google Scholar 

  • Simões, P. I., Stow, A., Hödl, W., Amézquita, A., Farias, I. P., & Lima, A. P. (2014). The value of including intraspecific measures of biodiversity in environmental impact surveys is highlighted by the Amazonian brilliant-thighed frog (Allobates femoralis). Tropical Conservation Science, 7(4), 811–828.

    Article  Google Scholar 

  • Smaragdov, M. G., Kudinov, A. A., & Uimari, P. (2018). The assessing the genetic differentiation of Holstein cattle herds in the Leningrad region using Fst statistics. Agricultural and Food Science, 27(2), 96–101.

    Article  Google Scholar 

  • Souza Filho, P. W. M. E., Quadros, M. L. D. E. S., Scandolara, J. E., Da SilvaFilho, E. P., & Reis, M. R. (1999). Compartimentação morfoestrutural e neotectônica do sistema fluvial Guaporé-Mamoré-alto Madeira, Rondônia-Brasil. Revista Brasileira de Geociências, 29(4), 469–476.

    Article  Google Scholar 

  • Steindachner, F. (1864). Batrachologische Mitteilungen. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, 14, 239–288.

    Google Scholar 

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thom, G., Xue, A. T., Sawakuchi, A. O., Ribas, C. C., Hickerson, M. J., Aleixo, A., & Miyaki, C. (2020). Quaternary climate changes as speciation drivers in the Amazon floodplains. Science Advances, 6(11), eaax4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turci, L. C. B., & Bernarde, P. S. (2008). Herpetofaunistic survey in a location in the municipality of Cacoal, Rondônia, Brazil. Bioikos, 2, 101–108.

    Google Scholar 

  • Vallinoto, M., Araripe, J., Rego, P. S. D., Tagliaro, C. H., Sampaio, I., & Schneider, H. (2006). Tocantins river as an effective barrier to gene flow in Saguinus niger populations. Genetics and Molecular Biology, 29(2), 215–219.

    Article  Google Scholar 

  • van der Hammen, T. (1974). The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography, 1(1), 3–26.

    Article  Google Scholar 

  • van der Hammen, T., & Absy, M. L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2–4), 247–261.

    Article  Google Scholar 

  • van der Hammen, T., & Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19(8), 725–742.

    Article  Google Scholar 

  • van Roosmalen, M. G. M., Roosmalen, T., Mittermeier, R. A., & Fonseca, G. D. (1998). A new and distinctive species of marmoset (Callitrichidae, Primates) from the lower Rio Aripuanã, state of Amazonas, central Brazilian Amazonia. Goeldiana Zoologia, 22, 1–27.

    Google Scholar 

  • van Roosmalen, M. G. M., van Roosmalen, T., Mittermeier, R. A., & Rylands, A. B. (2000). Two new species of marmoset, genus Callithrix Erxleben, 1777 (Callitrichidae, Primates), from the Tapajos/Madeira interfluvium, South central Amazonia, Brazil. Neotropical Primates, 8, 2–18.

    Google Scholar 

  • Wallace, A. R. (1852). On the monkeys of the Amazon. Proceedings of the Zoological Society of London, 20, 107–110.

    Google Scholar 

  • Wilkinson, S., Wiener, P., Archibald, A. L., Law, A., Schnabel, R. D., McKay, S. D., Taylor, J. F., & Ogden, R. (2011). Evaluation of approaches for identifying population informative markers from high density SNP chips. BMC Genetics, 12(1), 1–14.

    Article  Google Scholar 

  • Willing, E. M., Dreyer, C., & van Oosterhout, C. (2012). Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE, 7(8), e42649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. (1949). The genetical structure of populations. Annals Eugenics, 15, 323.

    Article  Google Scholar 

  • Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19(3), 395–420.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the team of the amphibian study group (Marison P. Pinto, Ivo S. Quintino, Edivaldo F. Vasconcelos, Maria C. Araújo and Jussara Dayrell), led by APL, for field sampling; to the technical team of the Thematic Laboratory of Molecular Biology (LTBM—INPA) for assisting LAM during the sequencing of samples; and to the National Institute of Amazon Researches (INPA) for the infrastructure provided, through LTBM. LAM is very grateful to Eduardo Gentil Ginani Gurgel for all the essential assistance during the analysis, discussion, writing and revision of the manuscript. LAM is also grateful to Adrian Barnett for the comments and review during the translation of the manuscript, and to Mateus Ferreira for clarification on some of the analyzes. This work was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) through the scholarship provides to LAM, and through its Support Program for Excellency Centres (CAPES/PROEX Grant nº: 0616/2018), whose resource was used in the translation of this manuscript. Funding for genetic analysis has been provided by grants from the Dimensions US-Biota-São Paulo: Assembly and evolution of the Amazon biota and its environment: an integrated approach, co-funded by the US National Science Foundation (NSF DEB 1241066), National Aeronautics and Space Administration (NASA), and the São Paulo Research Foundation (FAPESP, Grant #2012/50260-6) to CCR. Funding for collection of the animals was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Universal Grant nº 401120/2016-3) to APL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa A. de Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

For this research, all samples were collected following Brazilian regulations, under license number 13.777 (A.P.L.) issued by Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, L.A., Ribas, C.C. & Lima, A.P. Genetic Diversification of Adelphobates quinquevittatus (Anura: Dendrobatidae) and the Influence of Upper Madeira River Historical Dynamics. Evol Biol 48, 269–285 (2021). https://doi.org/10.1007/s11692-021-09536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-021-09536-y

Keywords

Navigation