Skip to main content

Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach

Abstract

A mass spectrometry based phylonumerics approach has been applied to study the molecular evolution of influenza hemagglutinin of type B strains of the Victoria and Yamagata lineage. The results demonstrate that, despite the similar evolutionary topologies, the mutation profiles and diversity associated with the evolution of each lineage is very different. Most mutations occur exclusively in one lineage versus the other, and the mutation locations are largely difference. Despite this, the evolutionary dynamics share features with each other and type A hemagglutinin in that a large number of mutations in both lineages occur within known antigenic loop domains, where consecutive potential epistatic mutations occur in different loop regions, or successively within and outside such a region. The results are largely in accord with other conventional phylogenetic studies of the evolution and antigenic dynamics of such strains thus further validating the method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akand, E. H., & Downard, K. M. (2017). Mutational analysis employing a phylogenetic mass tree approach in a study of the evolution of the Influenza Virus. Molecular Phylogenetics and Evolution, 112, 209–217.

    Article  Google Scholar 

  2. Akand, E. H., & Downard, K. M. (2018a). Identification of epistatic mutations and insights into the evolution of the Influenza Virus using a mass-based protein phylogenetic approach. Molecular Phylogenetics and Evolution, 121, 132–138.

    CAS  Article  Google Scholar 

  3. Akand, E. H., & Downard, K. M. (2018b). Ancestral and compensatory mutations that promote antiviral resistance in Influenza N1 neuraminidase revealed by a phylonumerics approach. Journal of Molecular Evolution, 86, 546–553.

    CAS  Article  Google Scholar 

  4. Akand, E. H., & Downard, K. M. (2019). Mechanisms of antiviral resistance in Influenza neuraminidase revealed by a mass spectrometry based phylonumerics approach. Molecular Phylogenetics and Evolution, 135, 286–296.

    CAS  Article  Google Scholar 

  5. Akand, E. H., & Downard, K. M. (2020). Reimaging the tree of life using a mass based phylonumerics approach. Evolutionary Biology, 47, 76–84.

    Article  Google Scholar 

  6. Belshe, R. B. (2010). The need for quadrivalent vaccine against seasonal influenza. Vaccine, 28(Suppl 4), D45-53.

    Article  Google Scholar 

  7. Downard, K. M. (2020a). Mass-based protein phylogenetic approach to identify epistasis. In K.-C. Wong (Ed.), Methods in molecular biology: Epistasis—Methods and Protocols (pp. 1–7). Springer.

    Google Scholar 

  8. Downard, K. M. (2020b). Darwin’s tree of life is numbered. Resolving the origins of species by mass. Evolution in Biology, 47, 325–333.

    Article  Google Scholar 

  9. Downard, K. M. (2021). Sequence free phylogenetics with mass spectrometry. Mass Spectrometry Reviews. https://doi.org/10.1002/mas.21658.

    Article  Google Scholar 

  10. Dudas, G., Bedford, T., Lycett, S., & Rambaut, A. (2015). Reassortment between Influenza B lineages and the emergence of a coadapted PB1–PB2–HA gene complex. Molecular Biology and Evolution, 32, 162–172.

    CAS  Article  Google Scholar 

  11. Evans, J., Sheneman, L., & Foster, J. A. (2006). Relaxed neighbor joining: A fast distance-based phylogenetic tree construction method. Journal of Molecular Evolution, 62, 785–792.

    CAS  Article  Google Scholar 

  12. Fernandes, N. D., & Downard, K. M. (2014). Incorporation of a proteotyping approach using mass spectrometry for surveillance of influenza virus in cell-cultured strains. Journal of Clinical Microbiology, 53, 725–735.

    Article  Google Scholar 

  13. Glezen, W. P., Schmier, J. K., Kuehn, C. M., Ryan, K. J., & Oxford, J. (2013). The burden of Influenza B: A structured literature review. American Journal of Public Health, 103, e43–e51.

    Article  Google Scholar 

  14. James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochemical and Biophysical Research Communications, 195, 58–64.

    CAS  Article  Google Scholar 

  15. Jennings, L., Huang, Q. S., Barr, I., Lee, P.-I., Kim, W. J., Buchy, P., Sanicas, M., Mungall, B. A., & Chen, J. (2018). Literature review of the epidemiology of influenza B disease in 15 countries in the Asia-Pacific region, Influenza Other Respir. Viruses., 12, 383–411.

    Google Scholar 

  16. Kryazhimskiy, S., Dushoff, J., Bazykin, G. A., & Plotkin, J. B. (2011). Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genetics, 7, e1001301.

    CAS  Article  Google Scholar 

  17. Langat, P., Raghwani, J., Dudas, G., Bowden, T. A., Edwards, S., Gall, A., Bedford, T., Rambaut, A., Daniels, R. S., Russell, C. A., Pybus, O. G., McCauley, J., Kellam, P., & Watson, S. J. (2017). Genome-wide evolutionary dynamics of influenza B viruses on a global scale. PLoS Pathogen, 13, e1006749.

    Article  Google Scholar 

  18. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    CAS  Article  Google Scholar 

  19. Lun, A. T. L., Swaminathan, K., Wong, J. W. H., & Downard, K. M. (2013). Mass trees—A new phylogenetic approach and algorithm to chart evolutionary history with mass spectrometry. Analytical Chemistry, 85, 5475–5482.

    CAS  Article  Google Scholar 

  20. McCullers, J. A., Wang, G. C., He, S., & Webster, R. G. (1999). Reassortment and insertion-deletion are strategies for the evolution of influenza B viruses in nature. Journal of Virology, 73, 7343–7348.

    CAS  Article  Google Scholar 

  21. Milewska, A., Ner-Kluza, J., Dabrowska, A., Bodzon-Kulakowska, A., Pyrc, K., & Suder, P. (2020). Mass spectrometry in virological sciences. Mass Spectrometry Reviews, 39, 499–522.

    CAS  Article  Google Scholar 

  22. Ni, F., Kondrashkina, E., & Wang, Q. (2013). Structural basis for the divergent evolution of influenza B virus hemagglutinin. Virology, 446, 112–122.

    CAS  Article  Google Scholar 

  23. Nobusawa, E., & Sato, K. (2006). Comparison of the mutation rates of human Influenza A and B viruses. Journal of Virology, 80, 3675–3678.

    CAS  Article  Google Scholar 

  24. Opperdoes, F. R. (2009). Phylogenetic analysis using protein sequences. In M. Salemi, P. Lemey, & A.-K. Vandamme (Eds.), The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing (2nd ed.). Cambridge UK: Cambridge University Press.

    Google Scholar 

  25. Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology, 3, 327–332.

    CAS  Article  Google Scholar 

  26. Rambaut, A. FigTree v1.4.3. (2016).

  27. Reed, C., Meltzer, M. I., Finelli, L., & Fiore, A. (2012). Public health impact of including two lineages of influenza B in a quadrivalent seasonal influenza vaccine. Vaccine., 30, 1993–1998.

    Article  Google Scholar 

  28. Rota, P. A., Wallis, T. R., Harmon, M. W., Rota, J. S., Kendal, A. P., & Nerome, K. (1990). Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology, 175, 59–68.

    CAS  Article  Google Scholar 

  29. Schwahn, A. B., & Downard, K. M. (2009). Antigenicity of a type A influenza virus through a comparison of hemagglutination inhibition and mass spectrometry immunoassays. Journal of Immunoassay & Immunochemistry, 30, 245–261.

    CAS  Article  Google Scholar 

  30. Schwahn, A. B., & Downard, K. M. (2011). Proteotyping to establish the lineage of type A H1N1 and type B human influenza virus. Journal of Virological Methods, 171, 117–122.

    CAS  Article  Google Scholar 

  31. Schwahn, A. B., Wong, J. W. H., & Downard, K. M. (2009). Subtyping of the Influenza virus by high resolution mass spectrometry. Analytical Chemistry, 81, 3500–3506.

    CAS  Article  Google Scholar 

  32. Schwahn, A. B., Wong, J. W., & Downard, K. M. (2010). Rapid typing and subtyping of vaccine strains of the influenza virus with high resolution mass spectrometry. European Journal of Mass Spectrometry, 16, 321–329.

    CAS  Article  Google Scholar 

  33. Sheneman, L., Evans, J., & Foster, J. A. (2006). Clearcut: A fast implementation of relaxed neighbor joining. Bioinformatics, 22, 2823–2834.

    CAS  Article  Google Scholar 

  34. Suptawiwat, O., Ninpan, K., Boonarkart, C., Ruangrung, K., & Auewarakul, P. (2017). Evolutionary dynamic of antigenic residues on influenza B hemagglutinin. Virology, 502, 84–96.

    CAS  Article  Google Scholar 

  35. Swaminathan, K., & Downard, K. M. (2014). Evolution of Influenza neuraminidase and the detection of antiviral resistant strains using mass trees. Analytical Chemistry, 86, 629–637.

    CAS  Article  Google Scholar 

  36. Virk, R. K., Jayakumar, J., Mendenhall, I. H., Moorthy, M., Lam, P., Linster, M., Lim, J., Lin, C., Oon, L. L. E., Lee, H. K., Koay, E. S. C., Vijaykrishna, D., Smith, G. J. D., & Su, Y. C. F. (2020). Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity. Proceedings of the National academy of Sciences of the United States of America, 117, 619–628.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

E. Akand was supported in part by an Australian Research Council Discovery Project grant (DP140100591) awarded to K. Downard. The authors acknowledge access to the Katana high-performance computational cluster at the University of New South Wales during the development of MassTree algorithm.

Author information

Affiliations

Authors

Contributions

EHA developed the modified algorithm and generated the initial datasets and trees. KMD conceived the approach and algorithm, prepared subsequent trees for the 1996–2016 strains, wrote the paper and prepared all figures and tables.

Corresponding author

Correspondence to Kevin M. Downard.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 111 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akand, E.H., Downard, K.M. Evolution of Type B Influenza Virus Using a Mass Spectrometry Based Phylonumerics Approach. Evol Biol 48, 259–268 (2021). https://doi.org/10.1007/s11692-021-09535-z

Download citation

Keywords

  • Evolution
  • Phylogenetics
  • Mutation
  • Influenza virus
  • Mass spectrometry